An Inverse Source Problem of Space-Fractional Diffusion Equation

被引:2
作者
Liu, Songshu [1 ]
Feng, Lixin [2 ]
Zhang, Guilai [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Hebei, Peoples R China
[2] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Space-fractional diffusion equation; Inverse source problem; Simplified generalized Tikhonov regularization method; A priori parameter choice; A posteriori parameter choice; PARAMETER-ESTIMATION; ANOMALOUS DIFFUSION; UNKNOWN SOURCE; REGULARIZATION; BEHAVIOR; MODEL;
D O I
10.1007/s40840-021-01174-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to an inverse space-dependent source problem for space-fractional diffusion equation. Furthermore, we show that this problem is ill-posed in the sense of Hadamard, i.e., the solution (if it exists) does not depend continuously on the data. In addition, we propose a simplified generalized Tikhonov regularization method and prove the corresponding convergence estimates by using a priori regularization parameter choice rule and a posteriori parameter choice rule, respectively. Finally, numerical examples are carried to support the theoretical results and illustrate the effectiveness of the proposed method.
引用
收藏
页码:4405 / 4424
页数:20
相关论文
共 31 条
[1]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[2]   Asymptotic behavior of solutions to space-time fractional diffusion-reaction equations [J].
Cheng, Xing ;
Li, Zhiyuan ;
Yamamoto, Masahiro .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (04) :1019-1031
[3]   Optimal regularization for an unknown source of space-fractional diffusion equation [J].
Dang Duc Trong ;
Dinh Nguyen Duy Hai ;
Nguyen Dang Minh .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 :184-206
[4]   Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method [J].
Fan, Wenping ;
Jiang, Xiaoyun ;
Qi, Haitao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 427 :40-49
[5]   From diffusion-weighted MRI to anomalous diffusion imaging [J].
Hall, Matt G. ;
Barrick, Thomas R. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (03) :447-455
[6]   Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain [J].
Jiang, H. ;
Liu, F. ;
Turner, I. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :3377-3388
[7]   ERROR ESTIMATES FOR A SEMIDISCRETE FINITE ELEMENT METHOD FOR FRACTIONAL ORDER PARABOLIC EQUATIONS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :445-466
[8]   Representation of solutions and large-time behavior for fully nonlocal diffusion equations [J].
Kemppainen, Jukka ;
Siljander, Juhana ;
Zacher, Rico .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :149-201
[9]  
Kirsch A., 1999, INTRO MATH THEORY IN
[10]   An a posteriori Fourier regularization method for identifying the unknown source of the space-fractional diffusion equation [J].
Li, Xiao-Xiao ;
Lei, Jin Li ;
Yang, Fan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,