EFFICIENT NON-CONVEX GRAPH CLUSTERING FOR BIG DATA

被引:0
作者
Naimipour, Naveed [1 ]
Soltanalian, Mojtaba [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2018年
基金
美国国家科学基金会;
关键词
Big Data; Non-Convex Methods; Graph Clustering; Soft/Hard Clustering; Matrix Factorization;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Big data analysis is a fundamental research topic with extensive technical obstacles yet to be overcome. Graph clustering has shown promise in addressing big data challenges by categorizing otherwise unlabeled data-thus giving them meaning. In this paper, we propose a set of non-convex programs, generally referred to as Hard and Soft Clustering programs, that rely on matrix factorization formulations for enhanced computational performance. Based on such formulations, we devise clustering algorithms that allow for large data analysis in a more efficient manner than traditional convex clustering techniques. Numerical results confirm the usefulness of the proposed algorithms for clustering purposes and reveal their potential for usage in big data applications.
引用
收藏
页码:2896 / 2900
页数:5
相关论文
共 50 条
[21]   Strategies for Big Data Clustering [J].
Kurasova, Olga ;
Marcinkevicius, Virginijus ;
Medvedev, Viktor ;
Rapecka, Aurimas ;
Stefanovic, Pavel .
2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, :740-747
[22]   Big Data clustering validity [J].
Tlili, Monia ;
Hamdani, Tarek M. .
2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, :348-352
[23]   Efficient Provenance Management via Clustering and Hybrid Storage in Big Data Environments [J].
Hu, Die ;
Feng, Dan ;
Xie, Yulai ;
Xu, Gongming ;
Gu, Xinrui ;
Long, Darrell .
IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (04) :792-803
[24]   Efficient Secure Outsourcing of Large-Scale Convex Separable Programming for Big Data [J].
Liao, Weixian ;
Luo, Changqing ;
Salinas, Sergio ;
Li, Pan .
IEEE TRANSACTIONS ON BIG DATA, 2019, 5 (03) :368-378
[25]   Efficient Quantitative Heuristics for Graph Clustering [J].
Santiago, Rafael ;
Lamb, Luis C. .
PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, :117-118
[26]   The non-convex geometry of low-rank matrix optimization [J].
Li, Qiuwei ;
Zhu, Zhihui ;
Tang, Gongguo .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (01) :51-96
[27]   Graph Regularized Symmetric Non-negative Matrix Factorization for Graph Clustering [J].
Gao, Ziheng ;
Guan, Naiyang ;
Su, Longfei .
2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, :379-384
[28]   Relaxed Majorization-Minimization for Non-Smooth and Non-Convex Optimization [J].
Xu, Chen ;
Lin, Zhouchen ;
Zhao, Zhenyu ;
Zha, Hongbin .
THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, :812-818
[29]   SHARP PERFORMANCE BOUNDS FOR GRAPH CLUSTERING VIA CONVEX OPTIMIZATION [J].
Vinayak, Ramya Korlakai ;
Oymak, Samet ;
Hassibi, Babak .
2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
[30]   Sinh-Cosh Optimization-Based Efficient Clustering for Big Data Applications [J].
Khrissi, Lahbib ;
Es-Sabry, Mohammed ;
El Akkad, Nabil ;
Satori, Hassan ;
Aldosary, Saad ;
El-Shafai, Walid .
IEEE ACCESS, 2024, 12 :193676-193692