INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRODINGER EQUATIONS IN RN

被引:0
作者
Chen, Caisheng [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; variational methods; (PS) condition; (C)(c) condition; WEAK SOLUTIONS; GROUND-STATE; LAPLACIAN; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using variational methods we prove the existence of infinitely many solutions to the fractional Schrodinger equation (-Delta)(s)u + V(x)u = f(x,u), x is an element of R-N, where N >= 2, s is an element of (0, 1). (-Delta)(s) stands for the fractional Laplacian. The potential function satisfies V(x) >= V-0 > 0. The nonlinearity f(x, u) is superlinear, has subcritical growth in u, and may or may not satisfy the (AR) condition.
引用
收藏
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 2000, Variational methods
[2]  
[Anonymous], 1986, CBMS REG C SER MATH
[3]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[6]   Front propagation in Fisher-KPP equations with fractional diffusion [J].
Cabre, Xavier ;
Roquejoffre, Jean-Michel .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) :1361-1366
[7]  
Caffarelli, 2012, NONLINEAR PARTIAL DI, P37, DOI DOI 10.1007/978-3-642-25361-4_3
[8]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[9]   Ground state solutions of asymptotically linear fractional Schrodinger equations [J].
Chang, Xiaojun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[10]  
de Souza M, 2015, NODEA-NONLINEAR DIFF, V22, P499, DOI 10.1007/s00030-014-0293-y