A Homotopy Method for the Constrained Inverse Problem in the Multiphase Porous Media Flow

被引:6
作者
Liu, Tao [1 ]
Xia, Kaiwen [1 ]
Zheng, Yuanjin [2 ]
Yang, Yanxiong [3 ]
Qiu, Ruofeng [3 ]
Qi, Yunfei [3 ]
Liu, Chao [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Hebei, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Hebei Bur Geol & Mineral Resources Explorat, Geol Brigade 8, Qinhuangdao 066000, Hebei, Peoples R China
关键词
inverse problem; homotopy method; multiphase porous media flow; constraints; PERTURBATION METHOD; ANNULAR FIN; FLUID; IDENTIFICATION; PREDICTION; PARAMETERS; TRANSPORT;
D O I
10.3390/pr10061143
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper considers the constrained inverse problem based on the nonlinear convection-diffusion equation in the multiphase porous media flow. To solve this problem, a widely convergent homotopy method is introduced and proposed. To evaluate the performance of the mentioned method, two numerical examples are presented. This method turns out to have wide convergence region and strong anti-noise ability.
引用
收藏
页数:14
相关论文
共 46 条
[1]   MHD Maxwell Fluid with Heat Transfer Analysis under Ramp Velocity and Ramp Temperature Subject to Non-Integer Differentiable Operators [J].
Abdeljawad, Thabet ;
Riaz, Muhammad Bilal ;
Saeed, Syed Tauseef ;
Iftikhar, Nazish .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 126 (02) :821-841
[2]   Solutions of system of Volterra integro-differential equations using optimal homotopy asymptotic method [J].
Agarwal, Praveen ;
Akbar, Muhammad ;
Nawaz, Rashid ;
Jleli, Mohamed .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) :2671-2681
[3]   Prediction of porous media fluid flow using physics informed neural networks [J].
Almajid, Muhammad M. ;
Abu-Al-Saud, Moataz O. .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
[4]   Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery [J].
Atzberger, Clement ;
Richter, Katja .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :208-218
[5]   Layered and laterally constrained 2D inversion of resistivity data [J].
Auken, E ;
Christiansen, AV .
GEOPHYSICS, 2004, 69 (03) :752-761
[6]   Application of homotopy perturbation method in inverse analysis of Jeffery-Hamel flow problem [J].
Biswal, Uddhaba ;
Chakraverty, S. ;
Ojha, B. K. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 86 :107-112
[7]   A fast homotopy algorithm for gridless sparse recovery [J].
Courbot, Jean-Baptiste ;
Colicchio, Bruno .
INVERSE PROBLEMS, 2021, 37 (02)
[8]  
ENGQUIST B, 1981, MATH COMPUT, V36, P321, DOI 10.1090/S0025-5718-1981-0606500-X
[9]  
ENTING I G, 1987, Tellus Series B Chemical and Physical Meteorology, V39, P459, DOI 10.1111/j.1600-0889.1987.tb00206.x
[10]  
Espedal M.S., 2000, Filtration in Porous Media and Industrial Application, P9