Lie Symmetry Reductions and Exact Solutions to the Rosenau Equation

被引:4
作者
Gao, Ben [1 ]
Tian, Hongxia [1 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
关键词
D O I
10.1155/2014/714635
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lie symmetry analysis is performed on the Rosenau equation which arises in modeling many physical phenomena. The similarity reductions and exact solutions are presented. Then the exact analytic solutions are considered by the power series method.
引用
收藏
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[2]  
Asmar NH, 2005, Partial differential equations with Fourier Series and Boundary Value. Problems, V2nd
[3]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[4]  
Cantwell B.J., 2002, CAMBRIDGE TEXTS APPL
[5]   A discontinuous Galerkin method for the Rosenau equation [J].
Choo, S. M. ;
Chung, S. K. ;
Kim, K. I. .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) :783-799
[6]   NEW SIMILARITY SOLUTIONS FOR THE MODIFIED BOUSSINESQ EQUATION [J].
CLARKSON, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (13) :2355-2367
[7]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[8]   Symmetry group methods for fundamental solutions [J].
Craddock, M ;
Platen, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) :285-302
[9]   Lie group symmetries as integral transforms of fundamental solutions [J].
Craddock, Mark ;
Lennox, Kelly A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :652-674
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&