Positive periodic solutions for a neutral delay Lotka-Volterra system

被引:4
作者
Liu, Guirong [1 ]
Yan, Jurang
Zhang, Fengqin
机构
[1] Shanxi Univ, Sch Math Sci, Shanxi 030006, Peoples R China
[2] Yuncheng Univ, Dept Math, Shanxi 044000, Peoples R China
基金
中国国家自然科学基金;
关键词
positive periodic solution; neutral delay differential equation; Lotka-Volterra; fixed point theorem; strict-set-contraction;
D O I
10.1016/j.na.2006.09.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Applying a fixed point theorem of strict-set-contraction, some new criteria are established for the existence of positive periodic solutions for a class of neutral delay Lotka-Volterra systems: x(i)' (t) = x(i)(t) [r(i)(t) - Sigma(n)(j=1) a(ij)(t)x(j)(t) - Sigma(n)(j=1) b(ij)(t)x(j)(t-tau(ij)(t)) - Sigma(n)(j=1) c(ij)(t)x(j)'(t-sigma(ij)(t))], i = 1,2, ..., n. Compared to known results, our main generalization is that delays of the derivatives are not assumed to be constants, and our results are more easily verifiable. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2642 / 2653
页数:12
相关论文
共 16 条
[1]   Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments [J].
Fan, M ;
Wang, K ;
Jian, DQ .
MATHEMATICAL BIOSCIENCES, 1999, 160 (01) :47-61
[2]  
FANG H, 2001, J MATH ANAL APPL, V259, P8
[3]   ON A PERIODIC NEUTRAL LOGISTIC EQUATION [J].
GOPALSAMY, K ;
HE, XZ ;
WEN, LZ .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :281-286
[4]  
Gopalsamy K., 1987, DYNAMICS STABILITY S, V2, P183
[5]  
Guo D., 1988, NONLINEAR PROBLEMS A
[6]  
Guo D. J., 2001, Nonlinear Functional Analysis, Vsecond
[7]   BOUNDEDNESS OF SOLUTIONS OF A NONLINEAR NONAUTONOMOUS NEUTRAL DELAY EQUATION [J].
KUANG, Y ;
FELDSTEIN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :293-304
[8]   ON NEUTRAL-DELAY 2-SPECIES LOTKA-VOLTERRA COMPETITIVE-SYSTEMS [J].
KUANG, Y .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1991, 32 :311-326
[9]  
Kuang Y., 1993, DELAY DIFFERENTIAL E
[10]  
Li Y, 1997, J MATH ANAL APPL, V214, P11