Numerical Analysis of the Eigenvalue Problem for One-Dimensional Differential Operator with Nonlocal Integral Conditions

被引:9
|
作者
Sajavicius, S. [1 ]
Sapagovas, M. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2009年 / 14卷 / 01期
关键词
numerical analysis; eigenvalue problem; one-dimensional differential operator; nonlocal integral conditions; STABILITY;
D O I
10.15388/NA.2009.14.1.14535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the eigenvalue problem for one-dimensional differential operator with nonlocal integral conditions is investigated numerically. The special cases of general problem are analyzed and hypothesis about the dependence of the spectral structure of that problem on the coefficient of differential operator and the parameters of nonlocal conditions are formulated.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 50 条
  • [1] The Eigenvalue Problem for a One-Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral Conditions*
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Joksiene, Zivile
    LITHUANIAN MATHEMATICAL JOURNAL, 2014, 54 (03) : 345 - 355
  • [2] The Eigenvalue Problem for a One-Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral Conditions*
    Mifodijus Sapagovas
    Regimantas Čiupaila
    Živilė Jokšiene
    Lithuanian Mathematical Journal, 2014, 54 : 345 - 355
  • [3] On One Eigenvalue Problem for a Differential Operator with Integral Conditions
    Jeseviciute, Z.
    DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (DETA 2009), 2009, : 99 - 105
  • [4] A new eigenvalue problem for the difference operator with nonlocal conditions
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Jakubeliene, Kristina
    Rutkauskas, Stasys
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 462 - 484
  • [5] A PROBLEM WITH NONLOCAL INTEGRAL CONDITION OF THE SECOND KIND FOR ONE-DIMENSIONAL HYPERBOLIC EQUATION
    Pulkina, L. S.
    Savenkova, A. E.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2016, 20 (02): : 276 - 289
  • [6] NUMERICAL STUDY OF ONE-DIMENSIONAL STEFAN PROBLEM WITH PERIODIC BOUNDARY CONDITIONS
    Qu, Liang-Hui
    Ling, Feng
    Xing, Lin
    THERMAL SCIENCE, 2013, 17 (05): : 1453 - 1458
  • [7] THE EIGENVALUE PROBLEM FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATION WITH TWO-POINT NONLOCAL CONDITIONS
    Elsaid, Ahmed
    Helal, Shaimaa M.
    El-Sayed, Ahmed M. A.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (01): : 146 - 158
  • [8] EIGENVALUE PROBLEM FOR FRACTIONAL DIFFERENCE EQUATION WITH NONLOCAL CONDITIONS
    Zhao, Yongshun
    Sun, Shurong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 32 - 44
  • [9] An eigenvalue problem involving an anisotropic differential operator
    Farcaseanu, Maria
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (03) : 297 - 306
  • [10] LOCALLY ONE-DIMENSIONAL DIFFERENCE SCHEME FOR A PSEUDOPARABOLIC EQUATION WITH NONLOCAL CONDITIONS
    Jachimaviciene, Justina
    Sapagovas, Mifodijus
    LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (01) : 53 - 61