Global solutions for 2D quadratic Schrodinger equations

被引:59
作者
Germain, P. [1 ]
Masmoudi, N. [1 ]
Shatah, J. [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2012年 / 97卷 / 05期
关键词
Schrodinger quadratic equations; Scattering; Space-time resonance; ASYMPTOTICALLY-FREE SOLUTIONS; LONG-RANGE SCATTERING; NONLINEAR SCHRODINGER; EXISTENCE; NONEXISTENCE; BEHAVIOR; TIME;
D O I
10.1016/j.matpur.2011.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global existence and scattering for a class of quadratic Schrodinger equations in dimension 2 with small and localized data. The proof relies on the idea of space-time resonance. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:505 / 543
页数:39
相关论文
共 32 条
[2]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[3]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[4]   RESONANCE AND LONG-TIME EXISTENCE FOR THE QUADRATIC SEMILINEAR SCHRODINGER-EQUATION [J].
COHN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) :973-1001
[5]  
Coifman R.R., 1978, ASTERISQUE, V57
[6]  
Delort J.-M., 2002, Mem. Soc. Math. Fr. (N.S.), V91
[7]  
Germain P., ANN MATH IN PRESS
[8]   Global Solutions for 3D Quadratic Schrodinger Equations [J].
Germain, Pierre ;
Masmoudi, Nader ;
Shatah, Jalal .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) :414-432
[9]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[10]   ALMOST GLOBAL EXISTENCE OF SMALL SOLUTIONS TO QUADRATIC NONLINEAR SCHRODINGER-EQUATIONS IN 3 SPACE DIMENSIONS [J].
GINIBRE, J ;
HAYASHI, N .
MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (01) :119-140