Fe-N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts

被引:99
作者
Zhang, Chao [1 ,2 ,3 ]
Liu, Jun [1 ,2 ]
Ye, Yixing [1 ,2 ]
Aslam, Zabeada [4 ]
Brydson, Rik [4 ]
Liang, Changhao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Solid State Phys, Anhui Key Lab Nanomat & Nanotechnol, Hefei 230031, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[4] Univ Leeds, Sch Chem & Proc Engn, Inst Mat Res, Leeds LS2 9JT, W Yorkshire, England
基金
中国国家自然科学基金;
关键词
porous carbon; Fe-N-C catalyst; dual active sites; oxygen reduction reaction; electrocatalysis; FUEL-CELLS; ELECTROCATALYTIC ACTIVITY; IRON; PERFORMANCE; CARBIDE; NANOPARTICLES; COMPOSITES; ALKALINE; ACID; COORDINATION;
D O I
10.1021/acsami.7b14443
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transition metal/nitrogen/carbon (M-N/C) catalysts are considered as one of the most promising candidates to replace Pt/C catalysts for oxygen reduction reactions (ORRs). Here, we have designed novel reduced graphene oxide (rGO)-supported Fe-N-doped carbon (Fe-N-C/rGO) catalysts via simple pyrolysis of polypyrrole(Ppy)-FeO-GO composites. The as-prepared catalysts induced an onset potential of 0.94 V and a half-wave potential of 0.81 V in alkaline solutions, which is much better than those of the counterpart N-C and N-C/rGO catalysts and comparable to that of Pt/C catalysts. Moreover, the Fe N-C/rGO catalysts showed improved durability and higher tolerance against methanol crossover than Pt/C in alkaline solutions. This superior ORR performance can be ascribed to the combined catalytic effect of both Fe-based nanoparticles (Fe3O4, Fe4C) and Fe-Nx sites, as well as fast mass transfer and accessible active sites benefiting from the mesoporous structure and high specific surface area. This work provides new insight for synthesis of a more promising nonplatinum electrocatalyst for metal air batteries and fuel-cell applications.
引用
收藏
页码:2423 / 2429
页数:7
相关论文
共 44 条
  • [1] Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode
    Aijaz, Arshad
    Masa, Justus
    Roesler, Christoph
    Xia, Wei
    Weide, Philipp
    Botz, Alexander J. R.
    Fischer, Roland A.
    Schuhmann, Wolfgang
    Muhler, Martin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) : 4087 - 4091
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
    Chen, Chen
    Kang, Yijin
    Huo, Ziyang
    Zhu, Zhongwei
    Huang, Wenyu
    Xin, Huolin L.
    Snyder, Joshua D.
    Li, Dongguo
    Herron, Jeffrey A.
    Mavrikakis, Manos
    Chi, Miaofang
    More, Karren L.
    Li, Yadong
    Markovic, Nenad M.
    Somorjai, Gabor A.
    Yang, Peidong
    Stamenkovic, Vojislav R.
    [J]. SCIENCE, 2014, 343 (6177) : 1339 - 1343
  • [4] Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions
    Chen, Pengzuo
    Zhou, Tianpei
    Xing, Lili
    Xu, Kun
    Tong, Yun
    Xie, Hui
    Zhang, Lidong
    Yan, Wensheng
    Chu, Wangsheng
    Wu, Changzheng
    Xie, Yi
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) : 610 - 614
  • [5] Electrocatalyst approaches and challenges for automotive fuel cells
    Debe, Mark K.
    [J]. NATURE, 2012, 486 (7401) : 43 - 51
  • [6] Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions
    Ferrero, Guillermo A.
    Preuss, Kathrin
    Marinovic, Adam
    Jorge, Ana Belen
    Mansor, Noramalina
    Brett, Dan J. L.
    Fuertes, Antonio B.
    Sevilla, Marta
    Titirici, Maria-Magdalena
    [J]. ACS NANO, 2016, 10 (06) : 5922 - 5932
  • [7] Co-N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid
    Fu, Xiaogang
    Choi, Ja-Yeon
    Zamani, Pouyan
    Jiang, Gaopeng
    Hoque, Md. Ariful
    Hassan, Fathy Mohamed
    Chen, Zhongwei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (10) : 6488 - 6495
  • [8] Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
    Gong, Kuanping
    Du, Feng
    Xia, Zhenhai
    Durstock, Michael
    Dai, Liming
    [J]. SCIENCE, 2009, 323 (5915) : 760 - 764
  • [9] Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
    Guo, Donghui
    Shibuya, Riku
    Akiba, Chisato
    Saji, Shunsuke
    Kondo, Takahiro
    Nakamura, Junji
    [J]. SCIENCE, 2016, 351 (6271) : 361 - 365
  • [10] Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction
    Guo, Shaojun
    Zhang, Sen
    Sun, Shouheng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (33) : 8526 - 8544