Motion correction in magnetic resonance spectroscopy

被引:16
作者
Saleh, Muhammad G. [1 ,2 ]
Edden, Richard A. E. [1 ,2 ]
Chang, Linda [3 ]
Ernst, Thomas [3 ]
机构
[1] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD USA
[2] Kennedy Krieger Inst, FM Kirby Ctr Funct Brain Imaging, Baltimore, MD USA
[3] Univ Maryland, Dept Diagnost Radiol & Nucl Med, 670 W Baltimore St,HSF 3,Room 1176, Baltimore, MD 21201 USA
关键词
motion; MRS; MRSI; navigated spectroscopy sequence; prospective correction; retrospective correction; REAL-TIME MOTION; J-DIFFERENCE SPECTROSCOPY; PROTON MR SPECTROSCOPY; HUMAN BRAIN; SHORT-ECHO; MULTIPLE-SCLEROSIS; WATER-SUPPRESSION; SPECTRAL QUALITY; GABA; FREQUENCY;
D O I
10.1002/mrm.28287
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In vivo proton magnetic resonance spectroscopy and spectroscopic imaging (MRS/MRSI) are valuable tools to study normal and abnormal human brain physiology. However, they are sensitive to motion, due to strong crusher gradients, long acquisition times, reliance on high magnetic field homogeneity, and particular acquisition methods such as spectral editing. The effects of motion include incorrect spatial localization, phase fluctuations, incoherent averaging, line broadening, and ultimately quantitation errors. Several retrospective methods have been proposed to correct motion-related artifacts. Recent advances in hardware also allow prospective (real-time) correction of the effects of motion, including adjusting voxel location, center frequency, and magnetic field homogeneity. This article reviews prospective and retrospective methods available in the literature and their implications for clinical MRS/MRSI. In combination, these methods can attenuate or eliminate most motion-related artifacts and facilitate the acquisition of high-quality data in the clinical research setting.
引用
收藏
页码:2312 / 2326
页数:15
相关论文
共 50 条
  • [41] INSPECTOR: free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis
    Gajdosik, Martin
    Landheer, Karl
    Swanberg, Kelley M.
    Juchem, Christoph
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] A modular motion compensation pipeline for prospective respiratory motion correction of multi-nuclear MR spectroscopy
    Wampl, Stefan
    Koerner, Tito
    Meyerspeer, Martin
    Zaitsev, Maxim
    Wolf, Marcos
    Trattnig, Siegfried
    Wolzt, Michael
    Bogner, Wolfgang
    Schmid, Albrecht Ingo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [43] Considerations for event-related gamma-aminobutyric acid functional magnetic resonance spectroscopy
    Mullins, Paul G.
    NMR IN BIOMEDICINE, 2024, 37 (11)
  • [44] Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis
    Thomson, Alice R.
    Pasanta, Duanghathai
    Arichi, Tomoki
    Puts, Nicolaas A.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2024, 162
  • [45] Multi-voxel Magnetic Resonance Spectroscopy of Cerebral Metabolites in Healthy Adults at 3 Tesla
    Doelken, Marc Thorsten
    Mennecke, Angelika
    Stadlbauer, Andreas
    Kloska, Stefan
    Struffert, Tobias
    Engelhorn, Tobias
    Thuerauf, Norbert
    Doerfler, Arnd
    Stefan, Hermann
    Hammen, Thilo
    ACADEMIC RADIOLOGY, 2009, 16 (12) : 1493 - 1501
  • [46] Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package
    Stefan, D.
    Di Cesare, F.
    Andrasescu, A.
    Popa, E.
    Lazariev, A.
    Vescovo, E.
    Strbak, O.
    Williams, S.
    Starcuk, Z.
    Cabanas, M.
    van Ormondt, D.
    Graveron-Demilly, D.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (10)
  • [47] Adult Brain Tumors Clinical Applications of Magnetic Resonance Spectroscopy
    Brandao, Lara A.
    Castillo, Mauricio
    NEUROIMAGING CLINICS OF NORTH AMERICA, 2013, 23 (03) : 527 - +
  • [48] Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease
    Sturrock, A.
    Laule, C.
    Decolongon, J.
    Santos, R. Dar
    Coleman, A. J.
    Creighton, S.
    Bechtel, N.
    Reilmann, R.
    Hayden, M. R.
    Tabrizi, S. J.
    MacKay, A. L.
    Leavitt, B. R.
    NEUROLOGY, 2010, 75 (19) : 1702 - 1710
  • [49] Suggestions for improving the visualization of magnetic resonance spectroscopy voxels and spectra
    Vuong Truong
    Duncan, Niall W.
    ROYAL SOCIETY OPEN SCIENCE, 2020, 7 (08):
  • [50] Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy
    Rao, Harshvardhan
    Gaur, Neeraj
    Tipre, Dnyanesh
    NUCLEAR MEDICINE COMMUNICATIONS, 2017, 38 (04) : 275 - 284