The generator of the transition semigroup corresponding to a stochastic variational inequality

被引:16
作者
Barbu, Viorel [1 ,2 ]
Da Prato, Giuseppe [3 ]
机构
[1] Univ Cuza, Iasi, Romania
[2] Inst Math Octav Mayer, Iasi, Romania
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
normal cone; oblique derivative problem; stochastic variational inequalities; transition semigroup;
D O I
10.1080/03605300701743764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One proves that the generator of the transition semigroup of a stochastic differential equation with boundary reflection on a convex set K is the realization of a second order elliptic operator on K with zero oblique derivative boundary conditions. Several implications to parabolic problems with oblique derivative are also derived.
引用
收藏
页码:1318 / 1338
页数:21
相关论文
共 16 条
[1]  
[Anonymous], DIFFERENTIAL INTEGRA
[2]   The Neumann problem on unbounded domains of Rd and stochastic variational inequalities [J].
Barbu, V ;
Da Prato, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (08) :1217-1248
[3]   Stochastic variational inequalities in infinite dimensional spaces [J].
Bensoussan, A ;
Rascanu, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) :19-54
[4]  
BOGACHEV VI, 2001, COMMUN PART DIFF EQ, V26, P11
[5]  
BREZIS H, 1973, MONOTONOUS MAXIMUM O
[6]   Multivalued Skorohod problem [J].
Cepa, E .
ANNALS OF PROBABILITY, 1998, 26 (02) :500-532
[7]  
CEPA E, 1994, CR ACAD SCI I-MATH, V319, P1075
[8]   Elliptic operators with unbounded drift coefficients and Neumann boundary condition [J].
Da Prato, G ;
Lunardi, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 198 (01) :35-52
[9]  
Da Prato G., 2004, Kolmogorov Equations for Stochastic PDEs, DOI 10.1007/978-3-0348-7909-5
[10]  
Da Prato G., 1996, Ergodicity for infinite dimensional systems