Large deviations for additive functionals of symmetric stable processes

被引:22
作者
Takeda, Masayoshi [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
基金
日本学术振兴会;
关键词
large deviation; symmetric stable process; additive functional; Dirichlet form;
D O I
10.1007/s10959-007-0111-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish the large deviation principle for additive functionals of symmetric alpha-stable processes employing the Gartner-Ellis theorem.
引用
收藏
页码:336 / 355
页数:20
相关论文
共 28 条
[1]  
ALBEVERIO S, 1991, RANDOM PARTIAL DIFFE
[2]   RELATIVISTIC SCHRODINGER-OPERATORS - ASYMPTOTIC-BEHAVIOR OF THE EIGENFUNCTIONS [J].
CARMONA, R ;
MASTERS, WC ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) :117-142
[3]   Large deviations and laws of the iterated logarithm for the local times of additive stable processes [J].
Chen, Xia .
ANNALS OF PROBABILITY, 2007, 35 (02) :602-648
[4]   Gaugeability and conditional gaugeability [J].
Chen, ZQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) :4639-4679
[5]   Absolute continuity of symmetric Markov processes [J].
Chen, ZQ ;
Fitzsimmons, PJ ;
Takeda, M ;
Ying, J ;
Zhang, TS .
ANNALS OF PROBABILITY, 2004, 32 (3A) :2067-2098
[6]  
Chung K. L., 1995, A Series of Comprehensive Studies in Mathematics, V312, DOI [DOI 10.1007/978-3-642-57856-4, 10.1007/978-3-642-57856-4]
[7]  
Dembo A., 1998, APPL MATH, V38
[8]  
Donsker M.D, 1974, P INT C FUNCT SPAC O
[9]  
FUKUSHIMA M, 1982, LECT NOTES PHYS, V173, P200
[10]  
Fukushima M., 2011, De Gruyter Stud. Math., V19