Quantum Monte Carlo for correlated out-of-equilibrium nanoelectronic devices

被引:61
作者
Profumo, Rosario E. V. [1 ,2 ]
Groth, Christoph [1 ,2 ]
Messio, Laura [3 ,4 ]
Parcollet, Olivier [3 ]
Waintal, Xavier [1 ,2 ]
机构
[1] Univ Grenoble Alpes, INAC SPSMS, F-38000 Grenoble, France
[2] CEA, INAC SPSMS, F-38000 Grenoble, France
[3] CEA, CNRS, IPhT, URA 2306, F-91191 Gif Sur Yvette, France
[4] Univ Paris 06, UMR CNRS 7600, LPTMC, F-75252 Paris, France
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 24期
关键词
RENORMALIZATION-GROUP; IMPURITY MODELS; SYSTEMS; GAS;
D O I
10.1103/PhysRevB.91.245154
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a simple, general purpose, quantum Monte Carlo algorithm for out-of-equilibrium interacting nanoelectronic systems. It allows one to systematically compute the expansion of any physical observable (such as current or density) in powers of the electron-electron interaction coupling constant U. It is based on the out-of-equilibrium Keldysh Green's function formalism in real-time and corresponds to evaluating all the Feynman diagrams to a given order U-n (up to n = 15 in the present work). A key idea is to explicitly sum over the Keldysh indices in order to enforce the unitarity of the time evolution. The coefficients of the expansion can easily be obtained for long-time, stationary regimes, even at zero temperature. We then illustrate our approach with an application to the Anderson model, an archetype interacting mesoscopic system. We recover various results of the literature such as the spin susceptibility or the "Kondo ridge" in the current-voltage characteristics. In this case, we found the Monte Carlo free of the sign problem even at zero temperature, in the stationary regime and in absence of a particle-hole symmetry. The main limitation of the method is the lack of convergence of the expansion in U for large U, i.e., a mathematical property of the model rather than a limitation of the Monte Carlo algorithm. Standard extrapolation methods of divergent series can be used to evaluate the series in the strong correlation regime.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] QUANTUM MONTE CARLO SIMULATION
    Wang, Yazhen
    ANNALS OF APPLIED STATISTICS, 2011, 5 (2A) : 669 - 683
  • [22] Quantum Monte Carlo Simulations
    Troyer, Matthias
    Werner, Philipp
    LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XIII, 2009, 1162 : 98 - 173
  • [23] Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks
    van Ravensteijn, Bas G. P.
    Voets, Ilja K.
    Kegel, Willem K.
    Eelkema, Rienk
    LANGMUIR, 2020, 36 (36) : 10639 - 10656
  • [24] Coherent multiple scattering of out-of-equilibrium interacting Bose gases
    Cherroret, Nicolas
    Scoquart, Thibault
    Delande, Dominique
    ANNALS OF PHYSICS, 2021, 435
  • [25] Emergence of effective temperatures in an out-of-equilibrium model of biopolymer folding
    Ancona, Marco
    Bentivoglio, Alessandro
    Caraglio, Michele
    Gonnella, Giuseppe
    Pelizzola, Alessandro
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [26] Efficient continuous-time quantum Monte Carlo method for the ground state of correlated fermions
    Wang, Lei
    Iazzi, Mauro
    Corboz, Philippe
    Troyer, Matthias
    PHYSICAL REVIEW B, 2015, 91 (23)
  • [27] Projector quantum Monte Carlo with matrix product states
    Wouters, Sebastian
    Verstichel, Brecht
    Van Neck, Dimitri
    Chan, Garnet Kin-Lic
    PHYSICAL REVIEW B, 2014, 90 (04):
  • [28] Out-of-equilibrium steady states of a locally driven lossy qubit array
    Dutta, Shovan
    Cooper, Nigel R.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [29] Reversible Photoswitchable Inhibitors Generate Ultrasensitivity in Out-of-Equilibrium Enzymatic Reactions
    Teders, Michael
    Pogodaev, Aleksandr A.
    Bojanov, Glenn
    Huck, Wilhelm T. S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (15) : 5709 - 5716
  • [30] Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions
    Piroli, Lorenzo
    De Nardis, Jacopo
    Collura, Mario
    Bertini, Bruno
    Fagotti, Maurizio
    PHYSICAL REVIEW B, 2017, 96 (11)