Quantum Monte Carlo for correlated out-of-equilibrium nanoelectronic devices

被引:61
|
作者
Profumo, Rosario E. V. [1 ,2 ]
Groth, Christoph [1 ,2 ]
Messio, Laura [3 ,4 ]
Parcollet, Olivier [3 ]
Waintal, Xavier [1 ,2 ]
机构
[1] Univ Grenoble Alpes, INAC SPSMS, F-38000 Grenoble, France
[2] CEA, INAC SPSMS, F-38000 Grenoble, France
[3] CEA, CNRS, IPhT, URA 2306, F-91191 Gif Sur Yvette, France
[4] Univ Paris 06, UMR CNRS 7600, LPTMC, F-75252 Paris, France
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 24期
关键词
RENORMALIZATION-GROUP; IMPURITY MODELS; SYSTEMS; GAS;
D O I
10.1103/PhysRevB.91.245154
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a simple, general purpose, quantum Monte Carlo algorithm for out-of-equilibrium interacting nanoelectronic systems. It allows one to systematically compute the expansion of any physical observable (such as current or density) in powers of the electron-electron interaction coupling constant U. It is based on the out-of-equilibrium Keldysh Green's function formalism in real-time and corresponds to evaluating all the Feynman diagrams to a given order U-n (up to n = 15 in the present work). A key idea is to explicitly sum over the Keldysh indices in order to enforce the unitarity of the time evolution. The coefficients of the expansion can easily be obtained for long-time, stationary regimes, even at zero temperature. We then illustrate our approach with an application to the Anderson model, an archetype interacting mesoscopic system. We recover various results of the literature such as the spin susceptibility or the "Kondo ridge" in the current-voltage characteristics. In this case, we found the Monte Carlo free of the sign problem even at zero temperature, in the stationary regime and in absence of a particle-hole symmetry. The main limitation of the method is the lack of convergence of the expansion in U for large U, i.e., a mathematical property of the model rather than a limitation of the Monte Carlo algorithm. Standard extrapolation methods of divergent series can be used to evaluate the series in the strong correlation regime.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Quantum Monte Carlo algorithm for out-of-equilibrium Green's functions at long times
    Bertrand, Corentin
    Parcollet, Olivier
    Maillard, Antoine
    Waintal, Xavier
    PHYSICAL REVIEW B, 2019, 100 (12)
  • [2] Quantum quasi Monte Carlo algorithm for out-of-equilibrium Green functions at long times
    Bertrand, Corentin
    Bauernfeind, Daniel
    Dumitrescu, Philipp T.
    Macek, Marjan
    Waintal, Xavier
    Parcollet, Olivier
    PHYSICAL REVIEW B, 2021, 103 (15)
  • [3] Monte Carlo simulation of nanoelectronic devices
    Gamiz, F.
    Godoy, A.
    Donetti, L.
    Sampedro, C.
    Roldan, J. B.
    Ruiz, F.
    Tienda, I.
    Rodriguez, N.
    Jimenez-Molinos, F.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2009, 8 (3-4) : 174 - 191
  • [4] Monte Carlo simulation of nanoelectronic devices
    F. Gamiz
    A. Godoy
    L. Donetti
    C. Sampedro
    J. B. Roldan
    F. Ruiz
    I. Tienda
    N. Rodriguez
    F. Jimenez-Molinos
    Journal of Computational Electronics, 2009, 8 : 174 - 191
  • [5] Dynamic Monte Carlo algorithm for out-of-equilibrium processes in colloidal dispersions
    Corbett, Daniel
    Cuetos, Alejandro
    Dennison, Matthew
    Patti, Alessandro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (22) : 15118 - 15127
  • [6] Cancellation of vacuum diagrams and the long-time limit in out-of-equilibrium diagrammatic quantum Monte Carlo
    Moutenet, Alice
    Seth, Priyanka
    Ferrero, Michel
    Parcollet, Olivier
    PHYSICAL REVIEW B, 2019, 100 (08)
  • [7] Quantum out-of-equilibrium cosmology
    Sayantan Choudhury
    Arkaprava Mukherjee
    Prashali Chauhan
    Sandipan Bhattacherjee
    The European Physical Journal C, 2019, 79
  • [8] Quantum out-of-equilibrium cosmology
    Choudhury, Sayantan
    Mukherjee, Arkaprava
    Chauhan, Prashali
    Bhattacherjee, Sandipan
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (04):
  • [9] Out-of-equilibrium Monte Carlo simulations of a classical gas with Bose-Einstein statistics
    Di Pietro Martinez, M.
    Giuliano, M.
    Hoyuelos, M.
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [10] Quantum mechanical effects on noise properties of nanoelectronic devices: Application to Monte Carlo simulation
    Oriols, X
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (09) : 1830 - 1836