On the extremal values of the eccentric distance sum of trees with a given maximum degree

被引:3
作者
Miao, Lianying [1 ]
Pang, Jingru [2 ]
Xu, Shoujun [3 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221008, Jiangsu, Peoples R China
[2] Dalian Univ Technol, Sch Energy & Power, Dalian 116024, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Tree; Eccentric distance sum; Maximum degree; CONNECTIVITY INDEX; DEGREE SEQUENCE; WIENER INDEX; GRAPHS; INVARIANT;
D O I
10.1016/j.dam.2020.03.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph. The eccentric distance sum (EDS) of G is defined as xi(d)(G) = Sigma(v is an element of V)epsilon(G)(v)D-G(v)D-G(v), where epsilon(G)(v) is the eccentricity of the vertex v and D-G(v) = Sigma(u)(is an element of V)d(G)(u, v) is the sum of all distances from the vertex v. In this paper, the extremal tree which minimizes the EDS among n-vertex trees of given maximum degree is characterized. This proves Conjecture 3.2 posed in Miao et al., (2015). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 28 条
[1]   Extremal graphs for inequalities involving domination parameters [J].
Baogen, X ;
Cockayne, EJ ;
Haynes, TW ;
Hedetniemi, ST ;
Shangchao, Z .
DISCRETE MATHEMATICS, 2000, 216 (1-3) :1-10
[2]   Connectivity, diameter, minimal degree, independence number and the eccentric distance sum of graphs [J].
Chen, Shuya ;
Li, Shuchao ;
Wu, Yueyu ;
Sun, Lingli .
DISCRETE APPLIED MATHEMATICS, 2018, 247 :135-146
[3]   Closed formulas for the numbers of small independent sets and matchings and an extremal problem for trees [J].
Delorme, C ;
Favaron, O ;
Rautenbach, D .
DISCRETE APPLIED MATHEMATICS, 2003, 130 (03) :503-512
[4]   Wiener index versus maximum degree in trees [J].
Fischermann, M ;
Hoffmann, A ;
Rautenbach, D ;
Székely, L ;
Volkmann, L .
DISCRETE APPLIED MATHEMATICS, 2002, 122 (1-3) :127-137
[5]   Extremal values on the eccentric distance sum of trees [J].
Geng, Xianya ;
Li, Shuchao ;
Zhang, Meng .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2427-2439
[6]   Eccentric distance sum: A novel graph invariant for predicting biological and physical properties [J].
Gupta, S ;
Singh, M ;
Madan, AK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :386-401
[7]   Further results on the eccentric distance sum [J].
Hua, Hongbo ;
Zhang, Shenggui ;
Xu, Kexiang .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) :170-180
[8]   A short and unified proof of Yu et al.'s two results on the eccentric distance sum [J].
Hua, Hongbo ;
Xu, Kexiang ;
Wen, Shu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :364-366
[9]  
Ilic A, 2011, MATCH-COMMUN MATH CO, V65, P731
[10]   On the eccentric distance sum of graphs [J].
Ilic, Aleksandar ;
Yu, Guihai ;
Feng, Lihua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :590-600