Fine boundary regularity for the degenerate fractional p-Laplacian

被引:36
|
作者
Iannizzotto, Antonio [1 ]
Mosconi, Sunra J. N. [2 ]
Squassina, Marco [3 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
[3] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, Italy
关键词
Fractional p-Laplacian; Fractional Sobolev spaces; Weighted Holder regularity; Boundary regularity; HOLDER REGULARITY; EQUATIONS;
D O I
10.1016/j.jfa.2020.108659
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlocal equation driven by the fractional p-Laplacian (-Delta)(p)(s) with s is an element of]0,1[and p >= 2 (degenerate case), with a bounded reaction f and Dirichlet type conditions in a smooth domain Omega. By means of barriers, a nonlocal superposition principle, and the comparison principle, we prove that any weak solution u of such equation exhibits a weighted Holder regularity up to the boundary, that is, u/d(Omega)(s) is an element of C-alpha ((Omega) over bar) for some alpha is an element of]0,1[, d(Omega) being the distance from the boundary. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] Fine boundary regularity for the singular fractional p-Laplacian
    Iannizzotto, A.
    Mosconi, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 322 - 379
  • [2] A HOPF'S LEMMA AND THE BOUNDARY REGULARITY FOR THE FRACTIONAL P-LAPLACIAN
    Jin, Lingyu
    Li, Yan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1477 - 1495
  • [3] Sobolev versus Holder minimizers for the degenerate fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Squassina, Marco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 191
  • [4] A note on global regularity for the weak solutions of fractional p-Laplacian equations
    Iannizzotto, Antonio
    Mosconi, Sunra J. N.
    Squassina, Marco
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2016, 27 (01) : 15 - 24
  • [5] Global Holder regularity for the fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Squassina, Marco
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) : 1353 - 1392
  • [6] Hölder regularity for the fractional p-Laplacian
    Cassanello, Filippo Maria
    Duzgun, Fatma Gamze
    Iannizzotto, Antonio
    ADVANCES IN CALCULUS OF VARIATIONS, 2025,
  • [8] Regularity results for Choquard equations involving fractional p-Laplacian
    Biswas, Reshmi
    Tiwari, Sweta
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 4060 - 4085
  • [9] Higher Holder regularity for the fractional p-Laplacian in the superquadratic case
    Brasco, Lorenzo
    Lindgren, Erik
    Schikorra, Armin
    ADVANCES IN MATHEMATICS, 2018, 338 : 782 - 846
  • [10] A SURVEY ON BOUNDARY REGULARITY FOR THE FRACTIONAL p- LAPLACIAN AND ITS APPLICATIONS
    Iannizzotto, Antonio
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2024, 15 (01)