On stable exponential solutions in Einstein-Gauss-Bonnet cosmology with zero variation of G

被引:19
作者
Ivashchuk, V. D. [1 ,2 ]
机构
[1] RUDN Univ, Inst Gravitat & Cosmol, Miklukho Maklaya 6, Moscow 117198, Russia
[2] VNIIMS, Ctr Gravitat & Fundamental Metrol, Ozyornaya 46, Moscow 119361, Russia
基金
俄罗斯基础研究基金会;
关键词
MODEL; SINGULARITY; STABILITY; GRAVITY;
D O I
10.1134/S0202289316040095
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological constant I > is considered. Assuming diagonal cosmological metrics, we find, for certain I > > 0, new examples of solutions with an exponential time dependence of two scale factors, governed by two Hubble-like parameters H > 0 and h < 0, corresponding to submanifolds of dimensions m and l, respectively, with (m, l) = (4, 2), (5, 2), (5, 3), (6, 7), (7, 5), (7, 6) and D = 1 + m + l. Any of these solutions describes an exponential expansion of our 3-dimensional factor space with the Hubble parameter H and zero variation of the effective gravitational constant G. We also prove the stability of these solutions in the class of cosmological solutions with diagonal metrics.
引用
收藏
页码:329 / 332
页数:4
相关论文
共 23 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]   TIME-VARIATION OF GRAVITATIONAL CONSTANT IN MULTIDIMENSIONAL COSMOLOGY [J].
BRONNIKOV, KA ;
IVASHCHUK, VD ;
MELNIKOV, VN .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1988, 102 (02) :209-215
[3]   Exact exponential solutions in Einstein-Gauss-Bonnet flat anisotropic cosmology [J].
Chirkov, Dmitry ;
Pavluchenko, Sergey ;
Toporensky, Alexey .
MODERN PHYSICS LETTERS A, 2014, 29 (18)
[4]   ON THE APPROACH TO THE COSMOLOGICAL SINGULARITY IN QUADRATIC THEORIES OF GRAVITY - THE KASNER REGIMES [J].
DERUELLE, N .
NUCLEAR PHYSICS B, 1989, 327 (01) :253-266
[5]   Stationary vs. singular points in an accelerating FRW cosmology derived from six-dimensional Einstein-Gauss-Bonnet gravity [J].
Elizalde, E. ;
Makarenko, A. N. ;
Obukhov, V. V. ;
Osetrin, K. E. ;
Filippov, A. E. .
PHYSICS LETTERS B, 2007, 644 (01) :1-6
[6]   On exponential solutions in the Einstein-Gauss-Bonnet cosmology, stability and variation of G [J].
Ernazarov, K. K. ;
Ivashchuk, V. D. ;
Kobtsev, A. A. .
GRAVITATION & COSMOLOGY, 2016, 22 (03) :245-250
[7]   COSMOLOGICAL SOLUTIONS OF THE EXTENDED EINSTEIN GRAVITY WITH THE GAUSS-BONNET TERM [J].
ISHIHARA, H .
PHYSICS LETTERS B, 1986, 179 (03) :217-222
[8]  
Ivashchuk V. D., 1996, Gravitation & Cosmology, V2, P211
[9]   On stability of exponential cosmological solutions with non-static volume factor in the Einstein-Gauss-Bonnet model [J].
Ivashchuk, V. D. .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (08)
[10]   On exponential cosmological type solutions in the model with Gauss-Bonnet term and variation of gravitational constant [J].
Ivashchuk, V. D. ;
Kobtsev, A. A. .
EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (05) :1-12