On closed weingarten surfaces

被引:33
作者
Kühnel, W [1 ]
Steller, M [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, D-70550 Stuttgart, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 146卷 / 02期
关键词
curvature diagram; surface of revolution; Hopf surface; Weingarten surface;
D O I
10.1007/s00605-005-0313-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate closed surfaces in Euclidean 3-space satisfying certain functional relations kappa = F(lambda) between the principal curvatures kappa, lambda. In particular we find analytic closed surfaces of genus zero where F is a quadratic polynomial or F(lambda) = c lambda(2n+1). This generalizes results by H. Hopf on the case where F is linear and the case of ellipsoids of revolution where F(lambda) = c lambda(3).
引用
收藏
页码:113 / 126
页数:14
相关论文
共 12 条
[1]   SOME NEW CHARACTERIZATIONS OF THE EUCLIDEAN SPHERE [J].
CHERN, SS .
DUKE MATHEMATICAL JOURNAL, 1945, 12 (02) :279-290
[2]  
Hopf H., 1951, MATH NACHR, V4, P232
[3]  
HUANG XG, 1988, ACTA MATH SINICA, V31, P332
[4]  
KAPOULEAS N, 1991, J DIFFER GEOM, V33, P683
[5]   ON THE INNER CURVATURE OF THE 2ND FUNDAMENTAL FORM [J].
KUHNEL, W .
MONATSHEFTE FUR MATHEMATIK, 1981, 91 (03) :241-251
[6]  
KUHNEL W, 2002, DIFFEREENTIAL GEOMET
[7]  
Papantoniou B., 1984, Bull. Calcutta Math. Soc., V76, P49
[8]   HYPERBOLIC WEINGARTEN SURFACES [J].
VANBRUNT, B ;
GRANT, K .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 116 :489-504
[9]   Potential applications Weingarten surfaces in CAGD .1. Weingarten surfaces and surface shape investigation [J].
vanBrunt, B ;
Grant, K .
COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (06) :569-582
[10]   UBER GESCHLOSSENE WEINGARTENSCHE FLACHEN [J].
VOSS, K .
MATHEMATISCHE ANNALEN, 1959, 138 (01) :42-54