q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients

被引:112
作者
Kim, T. [1 ]
机构
[1] Kyungpook Natl Univ, EECS, Taegu 702701, South Korea
关键词
D O I
10.1134/S1061920808010068
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A purpose of this paper is to present a systemic study of some families of multiple q-Bernoulli numbers and polynomials by using the multivariate q-Volkenborn integral (= p-adic q-integral) on Z(p) . Moreover, the study of these higher-order q-Bernoulli numbers and polynomials implies some interesting q-analogs of Stirling number identities.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 25 条
[1]  
[Anonymous], ADV STUD CONT MATH
[2]  
[Anonymous], 2006, ADV STUD CONT MATH
[3]  
[Anonymous], ADV STUD CONT MATH
[4]   An invariant p-adic q-integral associated with q-Euler numbers and polynomials [J].
Canguel, Ismail Naci ;
Kurt, Veli ;
Simsek, Yilmaz ;
Pak, Hong Kyung ;
Rim, Seog-Hoon .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (01) :8-14
[5]   EXPANSIONS OF Q-BERNOULLI NUMBERS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (02) :355-364
[6]   Q-BERNOULLI NUMBERS AND POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :987-1000
[7]   A note on q-Bernoulli numbers and polynomials [J].
Hegazi, A. S. ;
Mansour, M. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (01) :9-18
[8]  
Kim T., 2007, Advanced Studies in Contemporary Mathematics, V15, P133
[9]   q-Extension of the Euler formula and trigonometric functions [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (03) :275-278
[10]  
Kim T, 2005, RUSS J MATH PHYS, V12, P186