Markov chain Monte Carlo in the analysis of single-molecule experimental data

被引:0
作者
Kou, SC [1 ]
Xie, XS [1 ]
Liu, JS [1 ]
机构
[1] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
来源
MONTE CARLO METHOD IN THE PHYSICAL SCIENCES | 2003年 / 690卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article provides a Bayesian analysis of the single-molecule fluorescence lifetime experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The DNA hairpin's conformational change is initially modeled as a two-state Markov chain, which is not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule, in addition to the hidden Markov structure, further complicates the matter. We show that the analytical form of the likelihood function can be obtained in the simplest case and a Metropolis-Hastings algorithm can be designed to sample from the posterior distribution of the parameters of interest and to compute desired estiamtes. To cope with the molecular diffusion process and the potentially oscillating energy barrier between the two states of the DNA hairpin, we introduce a data augmentation technique to handle both the Brownian diffusion and the hidden Ornstein-Uhlenbeck process associated with the fluctuating energy barrier, and design a more sophisticated Metropolis-type algorithm. Our method not only increases the estimating resolution by several folds but also proves to be successful for model discrimination.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条
[21]   Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis [J].
Christensen, N ;
Meyer, R .
PHYSICAL REVIEW D, 1998, 58 (08)
[22]   Improving Markov Chain Monte Carlo algorithms in LISA Pathfinder Data Analysis [J].
Karnesis, N. ;
Nofrarias, M. ;
Sopuerta, C. F. ;
Lobo, A. .
9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363
[23]   Monte Carlo simulation and maximum-likelihood analysis of single-molecule recycling in a nanochannel [J].
Wang, Bo ;
Davis, Lloyd M. .
OSA CONTINUUM, 2021, 4 (01) :212-228
[24]   Multivariate output analysis for Markov chain Monte Carlo [J].
Vats, Dootika ;
Flegal, James M. ;
Jones, Galin L. .
BIOMETRIKA, 2019, 106 (02) :321-337
[25]   Efficient Markov chain Monte Carlo with incomplete multinomial data [J].
Ahn, Kwang Woo ;
Chan, Kung-Sik .
STATISTICS AND COMPUTING, 2010, 20 (04) :447-456
[26]   Image segmentation by Data Driven Markov Chain Monte Carlo [J].
Tu, ZW ;
Zhu, SC ;
Shum, HY .
EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, :131-138
[27]   Efficient Markov chain Monte Carlo with incomplete multinomial data [J].
Kwang Woo Ahn ;
Kung-Sik Chan .
Statistics and Computing, 2010, 20 :447-456
[28]   Hierarchical models, data augmentation, and Markov chain Monte Carlo [J].
van Dyk, DA .
STATISTICAL CHALLENGES IN ASTRONOMY, 2003, :41-56
[29]   Markov Chain Monte Carlo for generating ranked textual data [J].
Cerqueti, Roy ;
Ficcadenti, Valerio ;
Dhesi, Gurjeet ;
Ausloos, Marcel .
INFORMATION SCIENCES, 2022, 610 :425-439
[30]   Markov chain Monte Carlo data association for target tracking [J].
Bergman, N ;
Doucet, A .
2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, :705-708