Preparation and microwave absorption characteristics of MoS2/Nd2O2CO3 composites

被引:6
作者
Chen, Hui [1 ]
Shen, Jun [1 ]
Zhang, Yanhua [2 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
[2] Chongqing Univ Arts & Sci, Chongqing 402160, Peoples R China
关键词
REDUCED GRAPHENE OXIDE; HYDROTHERMAL SYNTHESIS; COMPLEX PERMITTIVITY; ABSORBING PROPERTIES; FACILE SYNTHESIS; MOS2; NANOSHEETS; ND; SM; PERMEABILITY; MOLYBDENUM;
D O I
10.1007/s10854-021-07679-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The neodymium oxide carbonate (Nd2O2CO3) was prepared from neodymium hydroxide (Nd(OH)(3)) by hydrothermal and 550 degrees C heat treatment. Then, the MoS2/Nd2O2CO3 composites with different contents of Nd2O2CO3 were synthesized and the microwave absorption properties of MoS2/Nd2O2CO3 were studied. The results show that the MoS2/Nd2O2CO3 composites achieved stronger electromagnetic wave absorption performance than pure MoS2. The lamellar structure of NdO2CO3 provided attachment points for MoS2 and then formed MoS2/Nd2O2CO3 composites with multilayer flower-like structures according to the principle of directional aggregation. The multiple interface polarization between MoS2 and Nd2O2CO3 is good for electromagnetic absorption. And, the absorbing performance of MoS2/Nd2O2CO3 is also affected by the content of Nd2O2CO3. The minimum reflection loss (RL) peak of MoS2/Nd2O2CO3 with 0.03 g Nd2O2CO3 reached -54.2 dB at 12.3 GHz with a calculated thickness of 2.5 mm.
引用
收藏
页码:4902 / 4913
页数:12
相关论文
共 50 条
  • [21] Properties of unsupported MoS2 species produced in the preparation of MoS2/Al2O3 using a sonochemical method
    Koh, Jae Hyun
    Cho, Ara
    Lee, Sang-il
    Moon, Sang Heup
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2009, 26 (04) : 999 - 1003
  • [22] Preparation and Properties of MoS2 Nanosheets and Their Epoxy Composites
    He, Ya-fei
    Hao, Li-feng
    Lu, Xiao-long
    Yang, Fan
    Jiao, Wei-cheng
    Liu, Wen-bo
    Wang, Rong-guo
    ACTA POLYMERICA SINICA, 2015, (02): : 197 - 203
  • [23] Microwave Absorption Characteristics of M2+, 3+ (M = Mn3+, Zn2+, Ni2+)-substituted Sr3Co2Fe24O41 Hexaferrite Composites
    Heo, Jae-Hee
    Kang, Young-Min
    KOREAN JOURNAL OF METALS AND MATERIALS, 2024, 62 (08): : 645 - 655
  • [24] Synthesis of hollow spherical MoS2@Fe3O4-GNs ternary composites with enhanced microwave absorption performance
    Wang, Chunyu
    Ma, Yuanyuan
    Qin, Zhaohui
    Wang, Jingjing
    Zhong, Bo
    APPLIED SURFACE SCIENCE, 2021, 569
  • [25] Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites
    Li, Yun
    Cheng, Haifeng
    Wang, Nannan
    Zhou, Shen
    Xie, Dongjin
    Li, Tingting
    NANO, 2018, 13 (11)
  • [26] Supercapacitor with Carbon/MoS2 Composites
    Tobis, Maciej
    Sroka, Sylwia
    Frackowiak, Elzbieta
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [27] Improved preparation of MoS2/graphene composites and their inks for supercapacitors applications
    Wang, Hongxia
    Tran, Diana
    Moussa, Mahmoud
    Stanley, Nathan
    Tung, Tran T.
    Yu, Le
    Yap, Pei Lay
    Ding, Fuyuan
    Qian, Jun
    Losic, Dusan
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2020, 262
  • [28] MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials
    Li, Haiyan
    Zhao, Yucheng
    Wang, Chang-An
    FRONTIERS OF MATERIALS SCIENCE, 2018, 12 (04) : 354 - 360
  • [29] Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance
    Liu, Jiaolong
    Liang, Hongsheng
    Wu, Hongjing
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 130
  • [30] MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption
    Luo, Juhua
    Zhang, Kang
    Cheng, Mingliang
    Gu, Mingmin
    Sun, Xinkai
    CHEMICAL ENGINEERING JOURNAL, 2020, 380