Banach spaces with the (strong) Gelfand-Phillips property

被引:4
作者
Banakh, T. [1 ,2 ]
Gabriyelyan, S. [3 ]
机构
[1] Ivan Franko Natl Univ, Lvov, Ukraine
[2] Jan Kochanowski Univ, Kielce, Poland
[3] Ben Gurion Univ Negev, Dept Math, PO 653, Beer Sheva, Israel
基金
英国科研创新办公室;
关键词
Banach space; Gelfand-Phillips property; Strong Gelfand-Phillips property; SUBSPACES;
D O I
10.1007/s43037-022-00179-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several new characterizations of the Gelfand-Phillips property are given. We define a strong version of the Gelfand-Phillips property and prove that a Banach space has this stronger property iff it embeds into c(0). For an infinite compact space K, the Banach space C(K) has the strong Gelfand-Phillips property iff C(K) is isomorphic to c(0) iff K is countable and has finite scattered height.
引用
收藏
页数:14
相关论文
共 32 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]  
[Anonymous], 2000, Extracta Math
[3]  
[Anonymous], 1977, Classical Banach spaces. I. Ergebnisse der Mathematik und ihrer Grenzgebiete
[4]  
Banakh, ARXIV211009062
[5]  
Bessaga C., 1960, STUD MATH, V19, P53
[6]   LIMITED OPERATORS AND STRICT COSINGULARITY [J].
BOURGAIN, J ;
DIESTEL, J .
MATHEMATISCHE NACHRICHTEN, 1984, 119 :55-58
[7]   On weak*-extensible Banach spaces [J].
Castillo, Jesus M. F. ;
Gonzalez, Manuel ;
Papini, Pier Luigi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :4936-4941
[8]  
Castillo JMF., 1997, 3 SPACE PROBLEMS BAN, DOI [10.1007/BFb0112511, DOI 10.1007/BFB0112511]
[9]   Compact lines and the Sobczyk property [J].
Correa, Claudia ;
Tausk, Daniel V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) :5765-5778
[10]   On extensions of c0-valued operators [J].
Correa, Claudia ;
Tausk, Daniel V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) :400-408