On the sum-connectivity index of cacti

被引:21
作者
Ma, Feiying [1 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
关键词
Sum-connectivity index; Perfect matching; Cactus; RANDIC INDEX;
D O I
10.1016/j.mcm.2011.02.040
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For a simple connected graph G = (V, E), X(G) = Sigma uv is an element of E 1/root d(u)+d(v) is its sum-connectivity index, where d(u) denotes the degree of a vertex u. A connected graph G is a cactus if any two of its cycles have at most one common vertex. Let g(n, r) be the set of cacti of order n and with r cycles, zeta (2n, r) the set of cacti of order 2n with a perfect matching and r cycles. In this paper, we give the sharp lower bounds of the sum-connectivity index of cacti among g(n, r) and zeta (2n, r) respectively: (1) if G is an element of g(n, r), n >= 5, then X(G) >= 2r/root n+1 + n-2r-1/root n + r/2; (2) if G is an element of zeta (2n, r), n >= 4, then X(G) >= n+r-1/root n+r+2 + 1/root n+r+1 + n-r-1/root 3 + r/2, and characterize the corresponding extremal cacti. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:497 / 507
页数:11
相关论文
共 18 条
  • [1] Devillers J, 2000, TOPOLOGICAL INDICES
  • [2] DU Z, SUM CONNECTIVITY IND
  • [3] Du Z., ARXIV09094577V1
  • [4] On the general sum-connectivity index of trees
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 402 - 405
  • [5] Minimum general sum-connectivity index of unicyclic graphs
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (03) : 697 - 703
  • [6] Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) : 842 - 855
  • [7] QUANTITATIVE STRUCTURE - ACTIVITY RELATIONSHIP STUDIES ON LOCAL-ANESTHETICS
    GUPTA, SP
    [J]. CHEMICAL REVIEWS, 1991, 91 (06) : 1109 - 1119
  • [8] HUANG Z, ARS COMBINA IN PRESS
  • [9] Kier L. B., 1986, Research studies
  • [10] A sharp lower bound of the Randic index of cacti with r pendants
    Lin, Anhua
    Luo, Rong
    Zha, Xiaoya
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (10) : 1725 - 1735