Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone

被引:60
作者
Amiralian, Nasim [1 ]
Annamalai, Pratheep K. [1 ]
Memmott, Paul [2 ,3 ]
Taran, Elena [4 ]
Schmidt, Susanne [5 ]
Martin, Darren J. [1 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Architecture, Brisbane, Qld 4072, Australia
[3] Univ Queensland, ISSR, Brisbane, Qld 4072, Australia
[4] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Australian Natl Fabricat Facility QLD Node, Brisbane, Qld 4072, Australia
[5] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
MICROFIBRILLATED CELLULOSE; NANOFIBRILLATED CELLULOSE; KRAFT PULP; SUSPENSIONS; NANOCRYSTALS; HEMICELLULOSES; EXTRACTION; OXIDATION; NANOPAPER; FIBRILS;
D O I
10.1039/c5ra02936h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of high aspect ratio cellulose nanofibres without resorting to very harsh mechanical and/or chemical processing steps remains a challenge that hinders progress in the fast-moving nanocellulose field. In response to this challenge, herein we report the preparation of high aspect ratio (>500) and small diameter (<8 nm) cellulose nanofibrils through the deconstruction of Australian native 'spinifex' grass (Triodia pungens) by applying very mild pulping conditions combined with only one pass of high pressure homogenization. Spinifex grass has an unusually high hemicellulose content, which facilitates this easy fibrillation process. Tensile measurements of the nanopaper produced by vacuum filtration indicated a high toughness of about 12 MJ m(-3), a tensile strength of 82 MPa and a high elongation at break of 18%. The transverse elastic modulus of single nanofibrils analysed by AM-FM is in the range of 19-24 GPa. Under these mild processing conditions, Triodia pungens nanofibrils retained their crystallinity.
引用
收藏
页码:32124 / 32132
页数:9
相关论文
共 68 条
[1]   Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach [J].
Abraham, E. ;
Deepa, B. ;
Pothan, L. A. ;
Jacob, M. ;
Thomas, S. ;
Cvelbar, U. ;
Anandjiwala, R. .
CARBOHYDRATE POLYMERS, 2011, 86 (04) :1468-1475
[2]   Rheological characterization of microfibrillated cellulose suspensions after freezing [J].
Agoda-Tandjawa, G. ;
Durand, S. ;
Berot, S. ;
Blassel, C. ;
Gaillard, C. ;
Garnier, C. ;
Doublier, J. -L. .
CARBOHYDRATE POLYMERS, 2010, 80 (03) :677-686
[3]   Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties [J].
Alemdar, Ayse ;
Sain, Mohini .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) :557-565
[4]   Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study [J].
Alila, Sabrine ;
Besbes, Iskander ;
Vilar, Manuel Rei ;
Mutje, Pere ;
Boufi, Sami .
INDUSTRIAL CROPS AND PRODUCTS, 2013, 41 :250-259
[5]  
Allan Grant E., 2002, P145
[6]   Water-Responsive Mechanically Adaptive Nanocomposites Based on Styrene-Butadiene Rubber and Cellulose Nanocrystals-Processing Matters [J].
Annamalai, Pratheep K. ;
Dagnon, Koffi L. ;
Monemian, Seyedali ;
Foster, E. Johan ;
Rowan, Stuart J. ;
Weder, Christoph .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (02) :967-976
[7]   The role of hemicellulose in nanofibrillated cellulose networks [J].
Arola, Suvi ;
Malho, Jani-Markus ;
Laaksonen, Paivi ;
Lille, Martina ;
Linder, Markus B. .
SOFT MATTER, 2013, 9 (04) :1319-1326
[8]   Aerogels from nanofibrillated cellulose with tunable oleophobicity [J].
Aulin, Christian ;
Netrval, Julia ;
Wagberg, Lars ;
Lindstrom, Tom .
SOFT MATTER, 2010, 6 (14) :3298-3305
[9]   A multitechnique approach to assess the effect of ball milling on cellulose [J].
Avolio, R. ;
BonadiesA, I. ;
Capitani, D. ;
Errico, M. E. ;
Gentile, G. ;
Avella, M. .
CARBOHYDRATE POLYMERS, 2012, 87 (01) :265-273
[10]  
Bertolazzi S., 2013, MICROSC ANAL, P21