Hyperparameters optimization of neural network using improved particle swarm optimization for modeling of electromagnetic inverse problems

被引:7
作者
Sarkar, Debanjali [1 ]
Khan, Taimoor [1 ]
Talukdar, Fazal Ahmed [1 ]
机构
[1] Natl Inst Technol Silchar, Dept Elect & Commun Engn, Silchar, India
关键词
Artificial neural network (ANN); electromagnetic bandgap (EBG); genetic algorithm (GA); monopole antenna; particle swarm optimization (PSO); ultra-wideband (UWB); ANTENNA;
D O I
10.1017/S1759078721001690
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optimization of hyperparameters of artificial neural network (ANN) usually involves a trial and error approach which is not only computationally expensive but also fails to predict a near-optimal solution most of the time. To design a better optimized ANN model, evolutionary algorithms are widely utilized to determine hyperparameters. This work proposes hyperparameters optimization of the ANN model using an improved particle swarm optimization (IPSO) algorithm. The different ANN hyperparameters considered are a number of hidden layers, neurons in each hidden layer, activation function, and training function. The proposed technique is validated using inverse modeling of two meander line electromagnetic bandgap unit cells and a slotted ultra-wideband antenna loaded with EBG structures. Three other evolutionary algorithms viz. hybrid PSO, conventional PSO, and genetic algorithm are also adopted for the hyperparameter optimization of the ANN models for comparative analysis. Performances of all the models are evaluated using quantitative assessment parameters viz. mean square error, mean absolute percentage deviation, and coefficient of determination (R-2). The comparative investigation establishes the accurate and efficient prediction capability of the ANN models tuned using IPSO compared to other evolutionary algorithms.
引用
收藏
页码:1326 / 1337
页数:12
相关论文
共 39 条
[1]   A NOVEL COMPACT SPLIT RING SLOTTED ELECTROMAGNETIC BANDGAP STRUCTURE FOR MICROSTRIP PATCH ANTENNA PERFORMANCE ENHANCEMENT [J].
Alam, M. S. ;
Islam, M. T. ;
Misran, N. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 130 :389-409
[2]  
[Anonymous], 2014, International Journal of Photoenergy
[3]  
Assunçao F, 2017, IEEE C EVOL COMPUTAT, P1557, DOI 10.1109/CEC.2017.7969488
[4]  
Bergstra J., 2011, Adv. Neural Inf. Process. Syst., P2546
[5]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[6]   A Compact Dual Band Gap Electromagnetic Band Gap Structure [J].
Bhavarthe, Pramod P. ;
Rathod, Surendra S. ;
Reddy, K. T. V. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (01) :596-600
[7]   A Compact Two Via Slot-Type Electromagnetic Bandgap Structure [J].
Bhavarthe, Pramod P. ;
Rathod, Surendra S. ;
Reddy, Kuraparthi T. V. .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (05) :446-448
[8]  
Dalal Priyanka, 2020, Progress In Electromagnetics Research C, V100, P161
[9]   Miniaturised UWB antenna with dual-band rejection of WLAN/WiMAX using slitted EBG structure [J].
Ghahremani, Mehdi ;
Ghobadi, Changiz ;
Nourinia, Javad ;
Ellis, Mubarak Sani ;
Alizadeh, Farzad ;
Mohammadi, Bahman .
IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13 (03) :360-366
[10]   Transmitarray Antenna Design Using Forward and Inverse Neural Network Modeling [J].
Gosal, Gurpreet ;
Almajali, E'qab ;
McNamara, Derek ;
Yagoub, Mustapha .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 :1483-1486