Hot Electron Driven Photocatalysis on Plasmon-Resonant Grating Nanostructures

被引:15
作者
Wang, Yu [3 ]
Aravind, Indu [2 ]
Cai, Zhi [3 ]
Shen, Lang [3 ]
Gibson, George N. [4 ,5 ]
Chen, Jihan [6 ]
Wang, Bo [2 ]
Shi, Haotian [7 ]
Song, Boxiang [6 ]
Guignon, Ernest [5 ]
Cady, Nathaniel C. [8 ,9 ]
Page, William D. [5 ]
Pilar, Arturo [5 ]
Cronin, Stephen B. [1 ,2 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[4] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[5] Ciencia Inc, E Hartford, CT 06108 USA
[6] Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
[7] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[8] SUNY Polytech Inst, Coll Nanoscale Sci, Albany, NY 12203 USA
[9] SUNY Polytech Inst, Coll Engn, Albany, NY 12203 USA
基金
美国国家科学基金会;
关键词
photocatalysis; plasmonic; water splitting; solar fuel; nanostructures; GUIDED-MODE RESONANCE; INDUCED DISSOCIATION; ENHANCEMENT; CONVERSION; INTERBAND; DYNAMICS; FILTERS; SOLAR; H-2;
D O I
10.1021/acsami.0c00066
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate the hot electron injection of photoexcited carriers in an Ag-based plasmon resonant grating structure. By varying the incident angle of irradiation, sharp dips are observed in the reflectance with p-polarized light (electric field perpendicular to grating lines) when there is wavevector matching between the incident light and the plasmon resonant modes of the grating and no angle dependence is observed with s-polarized light. This configuration enables us to compare photoelectrochemical current produced by plasmon resonant excitation with that of bulk metal interband absorption simply by rotating the polarization of the incident light while keeping all other parameters of the measurement fixed. With 633 nm light, we observed a 12-fold enhancement in the photocurrent (i.e., reaction rate) between resonant and nonresonant polarizations at incident angles of +/- 7.6 degrees from normal. At 785 nm irradiation, we observed similar resonant profiles to those obtained with 633 nm wavelength light but with a 44-fold enhancement factor. Using 532 nm light, we observed two resonant peaks (with approximately 10x enhancement) in the photocurrent at 19.4 degrees and 28.0 degrees incident angles, each corresponding to higher order modes in the grating with more nodes per period. The lower enhancement factors observed at shorter wavelengths are attributed to interband transitions, which provide a damping mechanism for the plasmon resonance. Finite difference time domain (FDTD) simulations of these grating structures confirm the resonant profiles observed in the angle-dependent spectra of these gratings and provide a detailed picture of the electric field profiles on and off resonance.
引用
收藏
页码:17459 / 17465
页数:7
相关论文
共 37 条
  • [1] New materials for hot electron generation: general discussion
    Aizpurua, Javier
    Baumberg, Jeremy
    Boltasseva, Alexandra
    Christopher, Phillip
    Cortes, Emiliano
    Cronin, Stephen B.
    Dadhich, Bhavesh Kumar
    de Nijs, Bart
    Deshpande, Preeti
    Fernandez, Yuri Diaz
    Fabris, Laura
    Gawinkowski, Sylwester
    Govorov, Alexander
    Halas, Naomi
    Huang, Junyang
    Jankiewicz, Bartlomiej
    Kamarudheen, Rifat
    Khurgin, Jacob
    Lee, Tae Kyung
    Mahin, Julien
    Marini, Andrea
    Maurer, Reinhard J.
    Mueller, Niclas Sven
    Park, Jeong Y.
    Rahaman, Mahfujur
    Schlucker, Sebastian
    Schultz, Zachary
    Sivan, Yonatan
    Tagliabue, Giulia
    Thangamuthu, Madasamy
    Xu, Hongxing
    Zayats, Anatoly
    [J]. FARADAY DISCUSSIONS, 2019, 214 : 365 - 386
  • [2] Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry
    Brown, Ana M.
    Sundararaman, Ravishankar
    Narang, Prineha
    Goddard, William A., III
    Atwater, Harry A.
    [J]. ACS NANO, 2016, 10 (01) : 957 - 966
  • [3] High Quantum Efficiency Hot Electron Electrochemistry
    Chae, Hyun Uk
    Ahsan, Ragib
    Lin, Qingfeng
    Sarkar, Debarghya
    Rezaeifar, Fatemeh
    Cronin, Stephen B.
    Kapadia, Rehan
    [J]. NANO LETTERS, 2019, 19 (09) : 6227 - 6234
  • [4] Plasmonically Enhanced Spectral Upconversion for Improved Performance of GaAs Solar Cells under Nonconcentrated Solar Illumination
    Chen, Huandong
    Lee, Sung-Min
    Montenegro, Angelo
    Kang, Dongseok
    Gai, Boju
    Lim, Haneol
    Dutta, Chayan
    He, Wanting
    Lee, Minjoo Larry
    Benderskii, Alexander
    Yoon, Jongseung
    [J]. ACS PHOTONICS, 2018, 5 (11): : 4289 - 4295
  • [5] Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe2
    Chen, Jihan
    Bailey, Connor S.
    Hong, Yilun
    Wang, Li
    Cai, Zhi
    Shen, Lang
    Hou, Bingya
    Wang, Yu
    Shi, Haotian
    Sambur, Justin
    Ren, Wencai
    Pop, Eric
    Cronin, Stephen B.
    [J]. ACS PHOTONICS, 2019, 6 (03) : 787 - 792
  • [6] Christopher P, 2012, NAT MATER, V11, P1044, DOI [10.1038/nmat3454, 10.1038/NMAT3454]
  • [7] Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
  • [8] Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules
    Govorov, Alexander O.
    Zhang, Hui
    Gun'ko, Yurii K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (32) : 16616 - 16631
  • [9] Homola J, 2006, SPRINGER SER CHEM SE, V4, P3, DOI 10.1007/5346_013
  • [10] Hot electron-driven photocatalytic water splitting
    Hou, Bingya
    Shen, Lang
    Shi, Haotian
    Kapadia, Rehan
    Cronin, Stephen B.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (04) : 2877 - 2881