共 14 条
Using Model Selection Criteria to Choose the Number of Principal Components
被引:4
作者:
Sclove, Stanley L.
[1
]
机构:
[1] Univ Illinois, Chicago, IL 60607 USA
来源:
JOURNAL OF STATISTICAL THEORY AND APPLICATIONS
|
2021年
/
20卷
/
03期
关键词:
Information criteria;
AIC;
BIC;
Principal components;
REGRESSION;
D O I:
10.1007/s44199-021-00002-4
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The use of information criteria, especially AIC (Akaike's information criterion) and BIC (Bayesian information criterion), for choosing an adequate number of principal components is illustrated.
引用
收藏
页码:450 / 461
页数:12
相关论文