Spatiotemporal dynamic differences of energy-related CO2 emissions and the related driven factors in six regions of China during two decades

被引:8
|
作者
Yang, Boyu [1 ]
Bai, Zhongke [1 ,2 ,3 ]
Wang, Jinman [1 ,2 ]
机构
[1] China Univ Geosci, Sch Land Sci & Technol, Beijing 100083, Peoples R China
[2] Minist Nat Resources, Key Lab Land Consolidat & Rehabil, Beijing 100035, Peoples R China
[3] Minist Nat Resources, Technol Innovat Ctr Ecol Restorat Engn Min Area, Beijing 100083, Peoples R China
关键词
LMDI; Moran's I; Coal consumption; Economic activity; Differentiation; Reduction policy; Carbon neutrality; CARBON-DIOXIDE EMISSIONS; DECOMPOSITION ANALYSIS; DRIVING FORCES; SPATIAL ASSOCIATION; LMDI APPROACH; CONSUMPTION; URBANIZATION; POLICY; INDICATORS; MITIGATION;
D O I
10.1007/s11356-021-17482-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon neutrality lays out a grand blueprint for carbon emission reduction and climate governance in China. How to reduce energy consumption is the key to achieving this goal. The economic development and energy consumption show a very large gap at the provincial level, and this paper divides China into six regions (North, Northeast, East, Mid-South, Southwest, and Northwest) and analyzes the dynamic changes and reveals the driving factors that have affected CO2 emission changes from 1997 to 2017. Then, the driving forces including energy intensity, energy structure, energy efficiency, economic activity, and population scale were discussed employing the logarithmic mean Divisia index (LMDI) based on provincial panel data. The results show that CO2 emissions from energy consumption show an upward trend, from 4145 Mt in 1997 to 13,250 Mt in 2017, with an annual average growth rate of 1.06%; coal consumption is the main source of CO2 emission. The regions with the highest proportion of CO2 emissions are the East and North, which account for 50% of total emissions. China's CO2 emissions from energy consumption, coal consumption, and output have shown significant spatial autocorrelation at the provincial scale. According to coal consumption, energy consumption CO2 emissions are divided into three stages: phase I (1997-2002), the increase in CO2 emissions in six regions was attributed to significant and positive impacts of energy intensity, economic activity, and population scale, the effects of which exceeded those of the energy structure and energy efficiency; phase II (2003-2012), the economic activity effect on CO2 emissions was highest in the East region, followed by the North and Mid-South regions; phase III (2013-2017), the East, Mid-South, and Southwest regions of China were dominated by the positive effects of energy intensity, economic activity, and population scale. The major driver of CO2 emissions is economic activity; the energy efficiency effect is an important inhibitory factor. Regional economic development and energy consumption in China are unbalanced; we conclude that differentiated emission reduction measures should be of particular concern for policymakers.
引用
收藏
页码:24737 / 24756
页数:20
相关论文
共 50 条
  • [1] Spatiotemporal dynamic differences of energy-related CO2 emissions and the related driven factors in six regions of China during two decades
    Boyu Yang
    Zhongke Bai
    Jinman Wang
    Environmental Science and Pollution Research, 2022, 29 : 24737 - 24756
  • [2] Energy-related CO2 emissions in Hebei province: Driven factors and policy implications
    Wen, Lei
    Liu, Yanjun
    ENVIRONMENTAL ENGINEERING RESEARCH, 2016, 21 (01) : 74 - 83
  • [3] Analysis of energy-related CO2 emissions and driving factors in five major energy consumption sectors in China
    Cui, Erqian
    Ren, Lijun
    Sun, Haoyu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (19) : 19667 - 19674
  • [4] Residential Energy-Related CO2 Emissions in China's Less Developed Regions: A Case Study of Jiangxi
    Yang, Yong
    Jia, Junsong
    Chen, Chundi
    SUSTAINABILITY, 2020, 12 (05)
  • [5] LMDI Decomposition of Energy-Related CO2 Emissions Based on Energy and CO2 Allocation Sankey Diagrams: The Method and an Application to China
    Ma, Linwei
    Chong, Chinhao
    Zhang, Xi
    Liu, Pei
    Li, Weiqi
    Li, Zheng
    Ni, Weidou
    SUSTAINABILITY, 2018, 10 (02)
  • [6] DECOUPLING ANALYSIS OF ENERGY-RELATED CO2 EMISSIONS FROM ECONOMIC GROWTH AT DIFFERENT STAGES IN CHINA
    Xu, Shi-Chun
    Zhang, Qing-Qing
    He, Zheng-Xia
    Long, Ru-Yin
    Chen, Hong
    FRESENIUS ENVIRONMENTAL BULLETIN, 2017, 26 (05): : 3118 - 3127
  • [7] Spatiotemporal dynamics of energy-related CO2 emissions in China based on nighttime imagery and land use data
    Wei, Wei
    Zhang, Xueyuan
    Cao, Xiaoyan
    Zhou, Liang
    Xie, Binbin
    Zhou, Junju
    Li, Chuanhua
    ECOLOGICAL INDICATORS, 2021, 131
  • [8] Regional Variation of Energy-related Industrial CO2 Emissions Mitigation in China
    Ren Shenggang
    Fu Xiang
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL TECHNOLOGY AND KNOWLEDGE TRANSFER, 2012, : 463 - 476
  • [9] The effects of urban land use on energy-related CO2 emissions in China
    Kang, Tingting
    Wang, Han
    He, Zhangyuan
    Liu, Zhengying
    Ren, Yang
    Zhao, Pengjun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 870
  • [10] A decomposition analysis of energy-related CO2 emissions in Chinese six high-energy intensive industries
    Du, Gang
    Sun, Chuanwang
    Ouyang, Xiaoling
    Zhang, Chi
    JOURNAL OF CLEANER PRODUCTION, 2018, 184 : 1102 - 1112