Eigenfunction approach to the persistent random walk in two dimensions

被引:8
作者
Bracher, C [1 ]
机构
[1] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada
关键词
persistent random walk; eigenfunction expansion;
D O I
10.1016/j.physa.2003.07.003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Fourier-Bessel expansion of a function on a circular disc yields a simple series representation for the end-to-end probability distribution function w(R,phi) encountered in a planar persistent random walk, where the direction taken in a step depends on the relative orientation towards the preceding step. For all but the shortest walks, the proposed method provides a rapidly converging, numerically stable algorithm that is particularly useful for the precise study of intermediate-size chains that have not yet approached the diffusion limit. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:448 / 466
页数:19
相关论文
共 27 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1944, TREATISE THEORY BESS
[3]   ISOTROPIC RANDOM FLIGHTS [J].
BARAKAT, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (06) :796-804
[4]  
BRAKAT R, 1974, OPT ACTA, V21, P921
[5]  
Flory P. J., 1969, STAT MECH CHAIN MOL
[6]  
Gradshteyn Izrail Solomonovich, 2014, Table of Integrals, Series, andProducts, VEighth
[7]  
KLUYVER JC, 1906, P SECT SCI K AKAD VA, V8, P341
[8]   Statistics of the two-dimensional ferromagnet Part I [J].
Kramers, HA ;
Wannier, GH .
PHYSICAL REVIEW, 1941, 60 (03) :252-262
[9]  
KRATKY O, 1949, RECL TRAV CHIM PAY B, V68, P1106
[10]   Semiflexible polymer in a uniform force field in two dimensions [J].
Lamura, A ;
Burkhardt, TW ;
Gompper, G .
PHYSICAL REVIEW E, 2001, 64 (06) :8