Multi-omics data integration by generative adversarial network

被引:42
作者
Ahmed, Khandakar Tanvir [1 ,2 ]
Sun, Jiao [1 ,2 ]
Cheng, Sze [3 ]
Yong, Jeongsik [3 ]
Zhang, Wei [1 ,2 ]
机构
[1] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA
[2] Univ Cent Florida, Genom & Bioinformat Cluster, Orlando, FL 32816 USA
[3] Univ Minnesota Twin Cities, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btab608
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous diseases like cancer in the era of precision medicine. With the advent of high throughput technologies, more comprehensive multi-omics data is now available that can effectively link the genotype to phenotype. However, the interactive relation of multi-omics datasets makes it particularly challenging to incorporate different biological layers to discover the coherent biological signatures and predict phenotypic outcomes. In this study, we introduce omicsGAN, a generative adversarial network model to integrate two omics data and their interaction network. The model captures information from the interaction network as well as the two omics datasets and fuse them to generate synthetic data with better predictive signals. Results: Large-scale experiments on The Cancer Genome Atlas breast cancer, lung cancer and ovarian cancer datasets validate that (i) the model can effectively integrate two omics data (e.g. mRNA and microRNA expression data) and their interaction network (e.g. microRNA-mRNA interaction network). The synthetic omics data generated by the proposed model has a better performance on cancer outcome classification and patients survival prediction compared to original omics datasets. (ii) The integrity of the interaction network plays a vital role in the generation of synthetic data with higher predictive quality. Using a random interaction network does not allow the framework to learn meaningful information from the omics datasets; therefore, results in synthetic data with weaker predictive signals.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 38 条
  • [1] Predicting effective microRNA target sites in mammalian mRNAs
    Agarwal, Vikram
    Bell, George W.
    Nam, Jin-Wu
    Bartel, David P.
    [J]. ELIFE, 2015, 4
  • [2] Ahmed K.T., 2021, BRIEF BIOINFORM, DOI DOI 10.1093/bib/bbab264
  • [3] Network-based drug sensitivity prediction
    Ahmed, Khandakar Tanvir
    Park, Sunho
    Jiang, Qibing
    Yeu, Yunku
    Hwang, TaeHyun
    Zhang, Wei
    [J]. BMC MEDICAL GENOMICS, 2020, 13 (Suppl 11)
  • [4] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [5] Arjovsky M, 2017, ARXIV PREPRINT ARXIV
  • [6] Integrated genomic analyses of ovarian carcinoma
    Bell, D.
    Berchuck, A.
    Birrer, M.
    Chien, J.
    Cramer, D. W.
    Dao, F.
    Dhir, R.
    DiSaia, P.
    Gabra, H.
    Glenn, P.
    Godwin, A. K.
    Gross, J.
    Hartmann, L.
    Huang, M.
    Huntsman, D. G.
    Iacocca, M.
    Imielinski, M.
    Kalloger, S.
    Karlan, B. Y.
    Levine, D. A.
    Mills, G. B.
    Morrison, C.
    Mutch, D.
    Olvera, N.
    Orsulic, S.
    Park, K.
    Petrelli, N.
    Rabeno, B.
    Rader, J. S.
    Sikic, B. I.
    Smith-McCune, K.
    Sood, A. K.
    Bowtell, D.
    Penny, R.
    Testa, J. R.
    Chang, K.
    Dinh, H. H.
    Drummond, J. A.
    Fowler, G.
    Gunaratne, P.
    Hawes, A. C.
    Kovar, C. L.
    Lewis, L. R.
    Morgan, M. B.
    Newsham, I. F.
    Santibanez, J.
    Reid, J. G.
    Trevino, L. R.
    Wu, Y. -Q.
    Wang, M.
    [J]. NATURE, 2011, 474 (7353) : 609 - 615
  • [7] Cancer Genome Atlas Research Network, 2018, Nature, V559, pE12, DOI [10.1038/nature13385, 10.1038/s41586-018-0228-6]
  • [8] Davidson-Pilon C., 2019, J OPEN SOURCE SOFTW, V4, P1317, DOI DOI 10.21105/JOSS.01317
  • [9] Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal
    Gao, Jianjiong
    Aksoy, Buelent Arman
    Dogrusoz, Ugur
    Dresdner, Gideon
    Gross, Benjamin
    Sumer, S. Onur
    Sun, Yichao
    Jacobsen, Anders
    Sinha, Rileen
    Larsson, Erik
    Cerami, Ethan
    Sander, Chris
    Schultz, Nikolaus
    [J]. SCIENCE SIGNALING, 2013, 6 (269) : pl1
  • [10] Ghahramani A., 2018, BIORXIV