Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images

被引:207
作者
Marchetti, Michael A. [1 ]
Codella, Noel C. F. [2 ]
Dusza, Stephen W. [1 ]
Gutman, David A. [3 ,4 ,5 ]
Helba, Brian [6 ]
Kalloo, Aadi [1 ]
Mishra, Nabin [7 ]
Carrera, Cristina [8 ]
Emre Celebi, M. [9 ]
DeFazio, Jennifer L. [1 ]
Jaimes, Natalia [10 ,11 ]
Marghoob, Ashfaq A. [1 ]
Quigley, Elizabeth [1 ]
Scope, Alon [1 ,12 ]
Yelamos, Oriol [1 ]
Halpern, Allan C. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med, Dermatol Serv, 16 E 60th St, New York, NY 10022 USA
[2] IBM Res Div, Thomas J Watson Res Ctr, Yorktown Hts, NY USA
[3] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA 30322 USA
[4] Emory Univ, Sch Med, Dept Psychiat, Atlanta, GA 30322 USA
[5] Emory Univ, Sch Med, Dept Biomed Informat, Atlanta, GA USA
[6] Kitware Inc, Clifton Pk, NY USA
[7] Stoecker & Associates, Rolla, MO USA
[8] Univ Barcelona, Inst Invest Biomed August Pi & Sunyer, Inst Salud Carlos III, Melanoma Unit,Dept Dermatol,Hosp Clin,CIBER Enfer, Barcelona, Spain
[9] Univ Cent Arkansas, Dept Comp Sci, Conway, AR USA
[10] Aurora Ctr Especializado Canc Piel, Dermatol Serv, Medellin, Colombia
[11] Univ Miami, Miller Sch Med, Dept Dermatol & Cutaneous Surg, Miami, FL 33136 USA
[12] Tel Aviv Univ, Sackler Sch Med, Sheba Med Ctr, Dept Dermatol, Tel Aviv, Israel
基金
美国国家卫生研究院;
关键词
computer algorithm; computer vision; dermatologist; International Skin Imaging Collaboration; International Symposium on Biomedical Imaging; machine learning; melanoma; reader study; skin cancer; CUTANEOUS MELANOMA; PERFORMANCE; SYSTEM; CLASSIFICATION; MULTICENTER; CANCER;
D O I
10.1016/j.jaad.2017.08.016
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background: Computer vision may aid in melanoma detection. Objective: We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. Methods: We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into "fusion" algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. Results: The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P =.68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). Limitations: The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Conclusion: Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists.
引用
收藏
页码:270 / +
页数:9
相关论文
共 25 条
[1]   Screening for Skin Cancer US Preventive Services Task Force Recommendation Statement [J].
Bibbins-Domingo, Kirsten ;
Grossman, David C. ;
Curry, Susan J. ;
Davidson, Karina W. ;
Ebell, Mark ;
Epling, John W., Jr. ;
Garcia, Francisco A. R. ;
Gillman, Matthew W. ;
Kemper, Alex R. ;
Krist, Alex H. ;
Kurth, Ann E. ;
Landefeld, C. Seth ;
Mangione, Carol M. ;
Phillips, William R. ;
Phipps, Maureen G. ;
Pignone, Michael P. ;
Siu, Albert L. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (04) :429-435
[2]   Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process [J].
Binder, M ;
Kittler, H ;
Dreiseitl, S ;
Ganster, H ;
Wolff, K ;
Pehamberger, H .
MELANOMA RESEARCH, 2000, 10 (06) :556-561
[3]   Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions [J].
Blum, A ;
Luedtke, H ;
Ellwanger, U ;
Schwabe, R ;
Rassner, G ;
Garbe, C .
BRITISH JOURNAL OF DERMATOLOGY, 2004, 151 (05) :1029-1038
[4]  
Brady MS, 2000, CANCER-AM CANCER SOC, V89, P342, DOI 10.1002/1097-0142(20000715)89:2<342::AID-CNCR19>3.0.CO
[5]  
2-P
[6]   A methodological approach to the classification of dermoscopy images [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Uddin, Bakhtiyar ;
Lyatornid, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :362-373
[7]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[8]   Deep learning ensembles for melanoma recognition in dermoscopy images [J].
Codella, N. C. F. ;
Nguyen, Q. -B. ;
Pankanti, S. ;
Gutman, D. A. ;
Helba, B. ;
Halpern, A. C. ;
Smith, J. R. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2017, 61 (4-5)
[9]   Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial [J].
Dreiseitl, Stephan ;
Binder, Michael ;
Hable, Krispin ;
Kittler, Harald .
MELANOMA RESEARCH, 2009, 19 (03) :180-184
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+