Cracking Propagation of Hardening Concrete Based on the Extended Finite Element Method

被引:2
|
作者
Zhu Zhenyang [1 ,2 ]
Chen Weimin [2 ]
Zhang Guoxin [1 ]
机构
[1] China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China
[2] Hydrochina Huadong Engn Corp, Hangzhou 310014, Zhejiang, Peoples R China
来源
JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION | 2017年 / 32卷 / 05期
基金
中国国家自然科学基金;
关键词
concrete; crack; self-deformation loads; extended finite element method; GROWTH; MODEL;
D O I
10.1007/s11595-017-1722-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete crack propagation under a constant hydration and hardening condition during the construction period, and a corresponding programming code was developed. The experimental investigation shows that initial crack propagation caused by self-deformation loads can be analyzed by this program. This improved algorithm was a preliminary application of the XFEM to the problem of the concrete self-deformation cracking during the hydration and hardening period. However, room for improvement exists for this algorithm in terms of matching calculation programs with mass concrete temperature fields containing cooling pipes and the influence of creep or damage on crack propagation.
引用
收藏
页码:1132 / 1139
页数:8
相关论文
共 50 条
  • [21] Modeling crack propagation in wood by extended finite element method
    Qiu, L. P.
    Zhu, E. C.
    van de Kuilen, J. W. G.
    EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS, 2014, 72 (02) : 273 - 283
  • [22] Extended finite element method for fretting fatigue crack propagation
    Giner, E.
    Sukumar, N.
    Denia, F. D.
    Fuenmayor, F. J.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (22-23) : 5675 - 5687
  • [23] Modelling of cohesive crack growth in concrete structures with the extended finite element method
    Unger, Joerg F.
    Eckardt, Stefan
    Koenke, Carsten
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) : 4087 - 4100
  • [24] APPLICATION OF EXTENDED FINITE ELEMENT METHOD TO CRACKED CONCRETE ELEMENTS - NUMERICAL ASPECTS
    Bobinski, J.
    Tejchman, J.
    ARCHIVES OF CIVIL ENGINEERING, 2012, 58 (04) : 409 - 431
  • [25] RESEARCH OF MESO DAMAGE AND FRACTURE OF CONCRETE PAVEMENT BASED ON EXTENDED FINITE ELEMENT METHOD
    Chen, Chengcheng
    Liu, Junqing
    M2D2015: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN, 2015, : 425 - 426
  • [26] Characteristics of windshield cracking upon low-speed impact: Numerical simulation based on the extended finite element method
    Xu, Jun
    Li, Yibing
    Chen, Xi
    Yan, Yuan
    Ge, Dongyun
    Zhu, Mengyi
    Liu, Bohan
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 48 (03) : 582 - 588
  • [27] Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws
    De Schutter, G
    COMPUTERS & STRUCTURES, 2002, 80 (27-30) : 2035 - 2042
  • [28] Extended Voronoi cell finite element method for multiple crack propagation in brittle materials
    Li, Huan
    Guo, Ran
    Cheng, Heming
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 109
  • [29] Simulation of Primary Fracture Propagation around Compressive Cavity with the Extended Finite Element Method
    Su, Kai
    Zhang, Zhi-min
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 425 - 430
  • [30] A study of Hydraulic fracture propagation in laminated shale using extended finite element method
    Deng, Yinghao
    Xia, Yang
    Wang, Di
    Jin, Yan
    COMPUTERS AND GEOTECHNICS, 2024, 166