We present a numerical method for two-phase incompressible Navier-Stokes equation with jump discontinuities in the normal projection of the stress tensor and in the material properties. Although the proposed method is only first-order accurate, it does capture discontinuities sharply, not neglecting nor omitting any component of the jump condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting saddle-point system is solved via an iterative procedure using recently introduced techniques by Egan and Gibou [9]. Numerical results support the inference that the proposed method converges in L-infinity norms even when velocities and pressures are not smooth across the interface and can handle a large density ratio that is likely to appear in a real-world simulation. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Ecole Polytech, Dept Math Appl, F-91128 Palaiseau, France
Politecn Milan, Dipartimento Matemat, I-20133 Milan, ItalyEcole Polytech, Dept Math Appl, F-91128 Palaiseau, France
Bellotti, Thomas
;
Theillard, Maxime
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Merced, Appl Math Dept, Sch Nat Sci, Merced, CA 95340 USAEcole Polytech, Dept Math Appl, F-91128 Palaiseau, France
机构:
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USANorth Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Chen, Xiaohong
;
Li, Zhilin
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USANorth Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Li, Zhilin
;
Ruiz Alvarez, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alcala UAH, Dept Phys & Math, Alcala De Henares, SpainNorth Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Egan, Raphael
;
Gibou, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
机构:
Ecole Polytech, Dept Math Appl, F-91128 Palaiseau, France
Politecn Milan, Dipartimento Matemat, I-20133 Milan, ItalyEcole Polytech, Dept Math Appl, F-91128 Palaiseau, France
Bellotti, Thomas
;
Theillard, Maxime
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Merced, Appl Math Dept, Sch Nat Sci, Merced, CA 95340 USAEcole Polytech, Dept Math Appl, F-91128 Palaiseau, France
机构:
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USANorth Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Chen, Xiaohong
;
Li, Zhilin
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USANorth Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
Li, Zhilin
;
Ruiz Alvarez, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alcala UAH, Dept Phys & Math, Alcala De Henares, SpainNorth Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Egan, Raphael
;
Gibou, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA