Regulation of bacterial type II restriction-modification (R-M) systems

被引:0
|
作者
Wesserling, Martyna [1 ]
机构
[1] Gdanski Uniwersytet Med, Katedra Biochem Klin, Zaklad Med Mol, PL-80211 Gdansk, Poland
来源
POSTEPY MIKROBIOLOGII | 2015年 / 54卷 / 01期
关键词
C protein; restriction-modification systems; regulation of expression; CITROBACTER SP RFL231; DNA METHYLTRANSFERASE; GENE-EXPRESSION; STRUCTURAL ORGANIZATION; CONTROLLER PROTEINS; HOST-CELL; ENDONUCLEASE; TRANSCRIPTION; C.CSP231I; SEQUENCES;
D O I
暂无
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Type II restriction-modification (R-M) systems encode two separate enzymes: a restriction endonuclease (R) and a DNA methyltransferase (M). The action of the DNA sequence-specific methyltransferase protects the host DNA from cleavage by an associated restriction enzyme. The function of type II restriction-modification system regulation is generally assumed to be prevention of bacterial cell auto-restriction. The R and M genes must be regulated in such a way that the cell's own DNA is fully protected before restriction endonuclease activity appears. There a variety of control mechanisms that ensure the correct temporal expression of R-M genes. Unfortunately, the regulation mechanisms have not been well explored thus far. The understanding of the expression regulation of R-M genes is important and may influence the direction of research on new therapeutic methods.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条
  • [11] Effects of Population Dynamics on Establishment of a Restriction-Modification System in a Bacterial Host
    Graovac, Stefan
    Rodic, Andjela
    Djordjevic, Magdalena
    Severinov, Konstantin
    Djordjevic, Marko
    MOLECULES, 2019, 24 (01)
  • [12] Establishment of a hybrid SalI-HgiDII type II restriction-modification system
    Pélaez, AI
    Ribas-Aparicio, RM
    Gómez, A
    Rodicio, MR
    BIOLOGICAL CHEMISTRY, 1998, 379 (4-5) : 583 - 584
  • [13] Transcription regulation of restriction-modification system Ecl18kI
    Protsenko, Alexey
    Zakharova, Marina
    Nagornykh, Maxim
    Solonin, Alexander
    Severinov, Konstantin
    NUCLEIC ACIDS RESEARCH, 2009, 37 (16) : 5322 - 5330
  • [14] Transcription regulation of restriction-modification system Esp1396I
    Bogdanova, Ekaterina
    Zakharova, Marina
    Streeter, Simon
    Taylor, James
    Heyduk, Tomasz
    Kneale, Geoff
    Severinov, Konstantin
    NUCLEIC ACIDS RESEARCH, 2009, 37 (10) : 3354 - 3366
  • [15] Various plasmid strategies limit the effect of bacterial restriction-modification systems against conjugation
    Dimitriu, Tatiana
    Szczelkun, Mark D.
    Westra, Edze R.
    NUCLEIC ACIDS RESEARCH, 2024, 52 (21) : 12976 - 12986
  • [16] Possible existence of a system similar to bacterial restriction-modification in plants
    Fedoreyeva, Larisa, I
    Vanyushin, Boris F.
    AIMS MOLECULAR SCIENCE, 2020, 7 (04): : 396 - 413
  • [17] Restriction-modification systems and phage resistance of enterococci from ewe milk
    Kopcakova, Anna
    Dubikova, Katarina
    Sul'ak, Martin
    Javorsky, Peter
    Kmet, Vladimir
    Laukova, Andrea
    Pristas, Peter
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2018, 93 : 131 - 134
  • [18] Nonlinear regulatory dynamics of bacterial restriction-modification systems modulates horizontal gene transfer susceptibility
    Djordjevic, Magdalena
    Zivkovic, Lidija
    Ou, Hong-Yu
    Djordjevic, Marko
    NUCLEIC ACIDS RESEARCH, 2025, 53 (02)
  • [19] The MmeI family: type II restriction-modification enzymes that employ single-strand modification for host protection
    Morgan, Richard D.
    Dwinell, Elizabeth A.
    Bhatia, Tanya K.
    Lang, Elizabeth M.
    Luyten, Yvette A.
    NUCLEIC ACIDS RESEARCH, 2009, 37 (15) : 5208 - 5221
  • [20] The XmnI restriction-modification system: Cloning, expression, sequence organization and similarity between the R and M genes
    Nwankwo, DO
    Lynch, JJ
    Moran, LS
    Fomenkov, A
    Slatko, BE
    GENE, 1996, 173 (02) : 121 - 127