Regulation of bacterial type II restriction-modification (R-M) systems

被引:0
|
作者
Wesserling, Martyna [1 ]
机构
[1] Gdanski Uniwersytet Med, Katedra Biochem Klin, Zaklad Med Mol, PL-80211 Gdansk, Poland
来源
POSTEPY MIKROBIOLOGII | 2015年 / 54卷 / 01期
关键词
C protein; restriction-modification systems; regulation of expression; CITROBACTER SP RFL231; DNA METHYLTRANSFERASE; GENE-EXPRESSION; STRUCTURAL ORGANIZATION; CONTROLLER PROTEINS; HOST-CELL; ENDONUCLEASE; TRANSCRIPTION; C.CSP231I; SEQUENCES;
D O I
暂无
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Type II restriction-modification (R-M) systems encode two separate enzymes: a restriction endonuclease (R) and a DNA methyltransferase (M). The action of the DNA sequence-specific methyltransferase protects the host DNA from cleavage by an associated restriction enzyme. The function of type II restriction-modification system regulation is generally assumed to be prevention of bacterial cell auto-restriction. The R and M genes must be regulated in such a way that the cell's own DNA is fully protected before restriction endonuclease activity appears. There a variety of control mechanisms that ensure the correct temporal expression of R-M genes. Unfortunately, the regulation mechanisms have not been well explored thus far. The understanding of the expression regulation of R-M genes is important and may influence the direction of research on new therapeutic methods.
引用
收藏
页码:5 / 9
页数:5
相关论文
共 50 条
  • [1] Bacterial Autoimmunity Due to a Restriction-Modification System
    Pleska, Maros
    Qian, Long
    Okura, Reiko
    Bergmiller, Tobias
    Wakamoto, Yuichi
    Kussell, Edo
    Guet, Calin C.
    CURRENT BIOLOGY, 2016, 26 (03) : 404 - 409
  • [2] Antisense RNA associated with biological regulation of a restriction-modification system
    Mruk, Iwona
    Liu, Yaoping
    Ge, Liying
    Kobayashi, Ichizo
    NUCLEIC ACIDS RESEARCH, 2011, 39 (13) : 5622 - 5632
  • [3] Understanding key features of bacterial restriction-modification systems through quantitative modeling
    Rodic, Andjela
    Blagojevic, Bojana
    Zdobnov, Evgeny
    Djordjevic, Magdalena
    Djordjevic, Marko
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [4] Restriction-modification systems in Mycoplasma spp
    Brocchi, Marcelo
    Ribeiro de Vasconcelos, Ana Tereza
    Zaha, Arnaldo
    GENETICS AND MOLECULAR BIOLOGY, 2007, 30 (01) : 236 - 244
  • [5] Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems
    Jeltsch, A
    Pingoud, A
    JOURNAL OF MOLECULAR EVOLUTION, 1996, 42 (02) : 91 - 96
  • [6] A model for the evolution of prokaryotic DNA restriction-modification systems based upon the structural malleability of Type I restriction-modification enzymes
    Bower, Edward K. M.
    Cooper, Laurie P.
    Roberts, Gareth A.
    White, John H.
    Luyten, Yvette
    Morgan, Richard D.
    Dryden, David T. F.
    NUCLEIC ACIDS RESEARCH, 2018, 46 (17) : 9067 - 9080
  • [7] Role of restriction-modification systems in prokaryotic evolution and ecology
    A. S. Ershova
    I. S. Rusinov
    S. A. Spirin
    A. S. Karyagina
    A. V. Alexeevski
    Biochemistry (Moscow), 2015, 80 : 1373 - 1386
  • [8] Role of restriction-modification systems in prokaryotic evolution and ecology
    Ershova, A. S.
    Rusinov, I. S.
    Spirin, S. A.
    Karyagina, A. S.
    Alexeevski, A. V.
    BIOCHEMISTRY-MOSCOW, 2015, 80 (10) : 1373 - 1386
  • [9] Statistical analysis of complete bacterial genomes: Avoidance of palindromes and restriction-modification systems
    E. M. Panina
    A. A. Mironov
    M. S. Gelfand
    Molecular Biology, 2000, 34 : 215 - 221
  • [10] Statistical analysis of complete bacterial genomes: Avoidance of palindromes and restriction-modification systems
    Panina, EM
    Mironov, AA
    Gelfand, MS
    MOLECULAR BIOLOGY, 2000, 34 (02) : 215 - 221