Evolving Boolean Functions with Conjunctions and Disjunctions via Genetic Programming

被引:5
作者
Doerr, Benjamin [1 ]
Lissovoi, Andrei [2 ]
Oliveto, Pietro S. [2 ]
机构
[1] Ecole Polytech, CNRS, Lab Informat LIX, Palaiseau, France
[2] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
来源
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19) | 2019年
基金
英国工程与自然科学研究理事会;
关键词
Theory; Genetic programming; Running time analysis;
D O I
10.1145/3321707.3321851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently it has been proved that simple GP systems can efficiently evolve the conjunction of n variables if they are equipped with the minimal required components. In this paper, we make a considerable step forward by analysing the behaviour and performance of a GP system for evolving a Boolean function with unknown components, i.e. the target function may consist of both conjunctions and disjunctions. We rigorously prove that if the target function is the conjunction of n variables, then a GP system using the complete truth table to evaluate program quality evolves the exact target function in O(ln log(2) n) iterations in expectation, where l >= n is a limit on the size of any accepted tree. Additionally, we show that when a polynomial sample of possible inputs is used to evaluate solution quality, conjunctions with any polynomially small generalisation error can be evolved with probability 1 - O(log(2) (n)/n). To produce our results we introduce a super-multiplicative drift theorem that gives significantly stronger runtime bounds when the expected progress is only slightly super-linear in the distance from the optimum.
引用
收藏
页码:1003 / 1011
页数:9
相关论文
共 50 条
  • [31] Evolving blackbox quantum algorithms using genetic programming
    Stadelhofer, Ralf
    Banzhaf, Wolfgang
    Suter, Dieter
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2008, 22 (03): : 285 - 297
  • [32] Evolving an Image Comparison Matrix Using Genetic Programming
    Wu, Xiaofei
    DCABES 2008 PROCEEDINGS, VOLS I AND II, 2008, : 1410 - 1418
  • [33] Evolving quantum circuits and programs through genetic programming
    Massey, P
    Clark, JA
    Stepney, S
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 569 - 580
  • [34] Evolving estimators of the pointwise Holder exponent with Genetic Programming
    Trujillo, Leonardo
    Legrand, Pierrick
    Olague, Gustavo
    Levy-Vehel, Jacques
    INFORMATION SCIENCES, 2012, 209 : 61 - 79
  • [35] Evolving Indigestible Codes: Fuzzing Interpreters with Genetic Programming
    Rawat, Sanjay
    Duchene, Fabien
    Groz, Roland
    Richier, Jean-Luc
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN CYBER SECURITY (CICS), 2013, : 37 - 39
  • [36] Evolving a Cloud-RobustWater Index with Genetic Programming
    Batista, Joao E.
    Silva, Sara
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 55 - 56
  • [37] Evolving Local Descriptor Operators through Genetic Programming
    Perez, Cynthia B.
    Olague, Gustavo
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2009, 5484 : 414 - 419
  • [38] AIMED: Evolving Malware with Genetic Programming to Evade Detection
    Castro, Raphael Labaca
    Schmitt, Corinna
    Rodosek, Gabi Dreo
    2019 18TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS/13TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (TRUSTCOM/BIGDATASE 2019), 2019, : 240 - 247
  • [39] Evolving evolutionary algorithms using linear genetic programming
    Oltean, M
    EVOLUTIONARY COMPUTATION, 2005, 13 (03) : 387 - 410
  • [40] Penalty Functions for Genetic Programming Algorithms
    Montana, Jose L.
    Alonso, Cesar L.
    Enrique Borges, Cruz
    de la Dehesa, Javier
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT I, 2011, 6782 : 550 - 562