On the Hopf-zero bifurcation of the Michelson system

被引:21
|
作者
Llibre, Jaume [1 ]
Zhang, Xiang [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Michelson system; Periodic orbit; Averaging method; Hopf bifurcation; STEADY SOLUTIONS;
D O I
10.1016/j.nonrwa.2010.10.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Applying a new result for studying the periodic orbits of a differential system via the averaging theory, we provide the first analytic proof of the existence of a Hopf-zero bifurcation for the Michelson system (x) over dot = y, (y) over dot = z, (z) over dot = c(2) - y - x(2)/2, at c = 0. Moreover our method estimates the shape of this periodic orbit as a function of c > 0, sufficiently small. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1650 / 1653
页数:4
相关论文
共 50 条
  • [41] Hopf-Zero bifurcation in an age-dependent predator-prey system with Monod-Haldane functional response comprising strong Allee effect
    Yang, Peng
    Wang, Yuanshi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9583 - 9618
  • [42] Breakdown of Heteroclinic Orbits for Some Analytic Unfoldings of the Hopf-Zero Singularity
    I. Baldoma
    T.M. Seara
    Journal of Nonlinear Science, 2006, 16 : 543 - 582
  • [43] Unique orbital normal form for vector fields of hopf-zero singularity
    Chen G.
    Wang D.
    Yang J.
    Journal of Dynamics and Differential Equations, 2005, 17 (1) : 3 - 20
  • [44] Breakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity
    Baldoma, I.
    Seara, T. M.
    JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (06) : 543 - 582
  • [45] On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system
    Jaume Llibre
    Regilene D. S. Oliveira
    Claudia Valls
    Nonlinear Dynamics, 2015, 80 : 353 - 361
  • [46] Zero-Hopf bifurcation in a 3D jerk system
    Braun, Francisco
    Mereu, Ana C.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [47] Bursting dynamics and the zero-Hopf bifurcation of simple jerk system
    Sun, Xi
    Yan, Shaohui
    Zhang, Yuyan
    Wang, Ertong
    Wang, Qiyu
    Gu, Binxian
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [48] Breakdown of a 2D Heteroclinic Connection in the Hopf-Zero Singularity (I)
    I. Baldomá
    O. Castejón
    T. M. Seara
    Journal of Nonlinear Science, 2018, 28 : 1551 - 1627
  • [49] On the integrability problem for the Hopf-zero singularity and its relation with the inverse Jacobi multiplier
    Algaba, A.
    Fuentes, N.
    Gamero, E.
    Garcia, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 405
  • [50] Constructing the Second Order Poincare Map Based on the Hopf-Zero Unfolding Method
    Ge, Gen
    Wei, Wang
    ABSTRACT AND APPLIED ANALYSIS, 2013,