A note on Keller-Osserman conditions on Carnot groups

被引:4
作者
Brandolini, Luca [1 ]
Magliaro, Marco [1 ]
机构
[1] Univ Bergamo, Dipartimento Ingn Informaz & Metodi Matemat, I-24044 Dalmine, BG, Italy
关键词
Keller-Osserman; Carnot groups; Differential inequalities; Maximum principle; LINEAR ELLIPTIC-EQUATIONS; GRADIENT TERMS; DIFFERENTIAL-INEQUALITIES; LAPLACIAN; EXISTENCE;
D O I
10.1016/j.na.2011.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the study of differential inequalities with gradient terms on Carnot groups. We are mainly focused on inequalities of the form Delta(phi)u >= f(u)l(vertical bar del(0)u vertical bar), where f, l and phi are continuous functions satisfying suitable monotonicity assumptions and Delta(phi) is the phi-Laplace operator, a natural generalization of the p-Laplace operator which has recently been studied in the context of Carnot groups. We extend to general Carnot groups the results proved in Magliaro et al. (2011) [7] for the Heisenberg group, showing the validity of Liouville-type theorems under a suitable Keller-Osserman condition. In doing so, we also prove a maximum principle for inequality Delta(phi)u >= f(u)l(vertical bar del(0)u vertical bar). Finally, we show sharpness of our results for a general phi-Laplacian. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2326 / 2337
页数:12
相关论文
共 19 条
[1]   Fundamental solution for the Q-Laplacian and sharp Moser-Trudinger inequality in Carnot groups [J].
Balogh, ZM ;
Manfredi, JJ ;
Tyson, JT .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 204 (01) :35-49
[2]   Polar coordinates in Carnot groups [J].
Balogh, ZM ;
Tyson, JT .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (04) :697-730
[3]   Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups [J].
Balogh, ZM ;
Holopainen, I ;
Tyson, JT .
MATHEMATISCHE ANNALEN, 2002, 324 (01) :159-186
[4]  
Bandle C, 1997, B UNIONE MAT ITAL, V11B, P227
[5]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P1
[6]   Nonnegative solutions of some quasilinear elliptic inequalities and applications [J].
D'Ambrosio, L. ;
Mitidieri, E. .
SBORNIK MATHEMATICS, 2010, 201 (06) :855-871
[7]   A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :967-1020
[8]  
Farina A, 2011, J DIFFER EQUATIONS, V250, P4409, DOI 10.1016/j.jde.2011.02.016
[9]   NONLINEAR WEIGHTED p-LAPLACIAN ELLIPTIC INEQUALITIES WITH GRADIENT TERMS [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Rigoli, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (03) :501-535
[10]   On entire solutions of degenerate elliptic differential inequalities with nonlinear gradient terms [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Rigoli, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :689-697