Polynomial expansion based fast iterative multiuser detection algorithm for synchronous DS-CDMA systems

被引:0
作者
Zhang, JF [1 ]
Wu, YL [1 ]
Gu, J [1 ]
Zhou, SD [1 ]
Wang, J [1 ]
机构
[1] Tsing Hua Univ, Dept Elect Engn, Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
来源
VTC2005-SPRING: 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS | 2005年
关键词
multiuser detection; polynomial expansion (PE); UTR4-TDD; TD-SCDM4; synchronous DS-CDMA; uplink; ZF-BLE; MMSE-BLE;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
multiuser detection algorithms usually have very high computational complexity, which greatly limits their usage. Polynomial Expansion (PE) multiuser detector can be viewed as an iterative approach to approximate the linear multiuser detectors with low complexity (O(N(2))). In this paper, we propose a new PE detector, which exhibits both faster convergence (fewer iterations) and higher performance (comparable to the MMSE multiuser detector). Analysis and simulation results for the third generation mobile communication system TD-SCDMA have shown the viability of this new detector. Even under high mobility circumstance, the proposed PE detector can still sustain its good performance.
引用
收藏
页码:988 / 991
页数:4
相关论文
共 9 条
[1]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[2]  
KOHNO R, 1983, IEICE T A, V66, P416
[3]   Simplified polynomial-expansion linear detectors for DS-CDMA systems [J].
Lei, ZD ;
Lim, TJ .
ELECTRONICS LETTERS, 1998, 34 (16) :1561-1563
[4]  
Moshavi S., 1996, International Journal of Wireless Information Networks, V3, P1, DOI 10.1007/BF02106658
[5]   OPTIMUM DETECTION OF CODE DIVISION MULTIPLEXED SIGNALS [J].
SCHNEIDER, KS .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1979, 15 (01) :181-185
[6]   Rapidly converging polynomial expansion multiuser detector with low complexity for CDMA systems [J].
Sessler, GMA ;
Jondral, FK .
ELECTRONICS LETTERS, 2002, 38 (17) :997-998
[7]  
SESSLER MA, 2002, IEEE VEH TECHN C 200, V3
[8]  
Verdu S., 1984, THESIS U ILLINOIS UR
[9]  
WATSON G. A., 1980, APPROXIMATION THEORY