Parameterized GSOR Method for a Class of Complex Symmetric Systems of Linear Equations

被引:0
|
作者
Wu, Yu-Jiang [1 ]
Zhang, Wei-Hong [2 ]
Li, Xi-An [3 ]
Yang, Ai-Li [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mathemat Sci, Shanghai 200240, Peoples R China
来源
JOURNAL OF MATHEMATICAL STUDY | 2019年 / 52卷 / 01期
基金
中国国家自然科学基金;
关键词
Complex linear systems; symmetric positive definite; spectral radius; convergence; preconditioning; ITERATION METHOD;
D O I
10.4208/jms.v52n1.19.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A parameterized generalized successive overrelaxation (PGSOR) method for a class of block two-by-two linear system is established in this paper. The convergence theorem of the method is proved under suitable assumptions on iteration parameters. Besides, we obtain a functional equation between the parameters and the eigenvalues of the iteration matrix for this method. Furthermore, an accelerated variant of the PGSOR (APGSOR) method is also presented in order to raise the convergence rate. Finally, numerical experiments are carried out to confirm the theoretical analysis as well as the feasibility and the efficiency of the PGSOR method and its variant.
引用
收藏
页码:18 / 29
页数:12
相关论文
共 50 条
  • [21] A variant of PMHSS iteration method for a class of complex symmetric indefinite linear systems
    Zheng, Zhong
    Zeng, Min-Li
    Zhang, Guo-Feng
    NUMERICAL ALGORITHMS, 2022, 91 (01) : 283 - 300
  • [22] On preconditioned MQHSS iterative method for solving a class of complex symmetric linear systems
    Li, Beibei
    Cui, Jingjing
    Huang, Zhengge
    Xie, Xiaofeng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [23] ON EULER PRECONDITIONED SHSS ITERATIVE METHOD FOR A CLASS OF COMPLEX SYMMETRIC LINEAR SYSTEMS
    Li, Cheng-Liang
    Ma, Chang-Feng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1607 - 1627
  • [24] Modified HSS iteration methods for a class of complex symmetric linear systems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    COMPUTING, 2010, 87 (3-4) : 93 - 111
  • [25] Modified HSS iteration methods for a class of complex symmetric linear systems
    Zhong-Zhi Bai
    Michele Benzi
    Fang Chen
    Computing, 2010, 87 : 93 - 111
  • [26] Minimum residual modified HSS iteration method for a class of complex symmetric linear systems
    Zhang, Wei-Hong
    Yang, Ai-Li
    Wu, Yu-Jiang
    NUMERICAL ALGORITHMS, 2021, 86 (04) : 1543 - 1559
  • [27] Two variants of the PMHSS iteration method for a class of complex symmetric indefinite linear systems
    Cao, Yang
    Ren, Zhi-Ru
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 61 - 71
  • [28] A PRECONDITIONED SSOR ITERATION METHOD FOR SOLVING COMPLEX SYMMETRIC SYSTEM OF LINEAR EQUATIONS
    Siahkolaei, Tahereh Salimi
    Salkuyeh, Davod Khojasteh
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2019, 9 (04): : 483 - 492
  • [29] On Preconditioned MHSS Real-Valued Iteration Methods for a Class of Complex Symmetric Indefinite Linear Systems
    Ren, Zhi-Ru
    Cao, Yang
    Zhang, Li-Li
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (02) : 192 - 210
  • [30] On semi-convergence of the parameterized generalized MHSS method for singular complex linear systems
    Zeng, Min-Li
    Sevin, Walker Paul
    Zhang, Guo-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (08) : 1824 - 1833