Critical behaviorsand critical values of branching random walks on multigraphs

被引:25
作者
Bertacchi, Daniela [1 ]
Zucca, Fabio [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
branching random walk; phase transition; multigraph; amenability; tree;
D O I
10.1239/jap/1214950362
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider weak and strong survival for branching random walks on multigraphs with bounded degree. We prove that, at the strong critical value, the process dies out locally almost surely. We relate the weak critical value to a geometric parameter of the multigraph. For a large class of multigraphs (which enlarges the class of quasi-transitive or regular graphs), we prove that, at the weak critical value, the process dies Out globally almost Surely. Moreover, for the same class, we prove that the existence of a pure weak phase is equivalent to nonamenability. The results are extended to branching random walks on weighted graphs.
引用
收藏
页码:481 / 497
页数:17
相关论文
共 15 条
[1]  
Cassi D., 1992, Modern Physics Letters B, V6, P1397, DOI 10.1142/S0217984992001101
[2]  
Gerl P., 1988, J THEORET PROBAB, V1, P171, DOI DOI 10.1007/BF01046933
[3]   Markov random fields and percolation on general graphs [J].
Häggström, O .
ADVANCES IN APPLIED PROBABILITY, 2000, 32 (01) :39-66
[4]  
Harris TE, 1963, Die Grundlehren der mathematischen Wissenschaften, V119
[5]   Anisotropic branching random walks on homogeneous trees [J].
Hueter, I ;
Lalley, SP .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (01) :57-88
[6]  
JAGERS P, 1995, BERNOULLI, V1, P191
[7]  
Liggett TM, 1999, PROG PROBAB, V44, P315
[8]   Branching random walks and contact processes on homogeneous trees [J].
Liggett, TM .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 106 (04) :495-519
[9]   RANDOM-WALKS AND PERCOLATION ON TREES [J].
LYONS, R .
ANNALS OF PROBABILITY, 1990, 18 (03) :931-958
[10]   Phase transitions on nonamenable graphs [J].
Lyons, R .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) :1099-1126