The first passage time density of Ornstein-Uhlenbeck process with continuous and impulsive excitations

被引:2
作者
Chen, Zi-Yi [1 ,2 ]
Kang, Yan-Mei [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Dept Appl Math, Xian 710049, Peoples R China
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
关键词
First passage time; Ornstein-Uhlenbeck process; Coherent impulse excitation; Alpha function approximation; Convergence in probability; STOCHASTIC RESONANCE; INTEGRAL-EQUATION; MODEL; NEURONS;
D O I
10.1016/j.chaos.2016.05.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first passage time of the Ornstein Uhlenbeck process plays a prototype role in various noise-induced escape problems. In order to calculate the first passage time density of the Ornstein Uhlenbeck process modulated by continuous and impulsive periodic excitations using the second kind Volterra integral equation method, we adopt an approximation scheme of approaching Dirac delta function by alpha function to transform the involved discontinuous dynamical threshold into a smooth one. It is proven that the first passage time of the approximate model converges to the first passage time of the original model in probability as the approximation exponent alpha tends to infinity. For given parameters, our numerical realizations further demonstrate that good approximation effect can be achieved when the approximation exponent alpha is 10. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:214 / 220
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 1984, Random Perturbations of Dynamical Systems
[2]   Efficient estimation of first passage time density function for jump-diffusion processes [J].
Atiya, AF ;
Metwally, SAK .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05) :1760-1775
[3]   Stochastic resonance in a sinusoidally forced LIF model with noisy threshold [J].
Barbi, M ;
Chillemi, S ;
Di Garbo, A ;
Reale, L .
BIOSYSTEMS, 2003, 71 (1-2) :23-28
[4]   On the computation of linear model predictive control laws [J].
Borrelli, Francesco ;
Baotic, Mato ;
Pekar, Jaroslav ;
Stewart, Greg .
AUTOMATICA, 2010, 46 (06) :1035-1041
[5]   A NEW INTEGRAL-EQUATION FOR THE EVALUATION OF 1ST-PASSAGE-TIME PROBABILITY DENSITIES [J].
BUONOCORE, A ;
NOBILE, AG ;
RICCIARDI, LM .
ADVANCES IN APPLIED PROBABILITY, 1987, 19 (04) :784-800
[6]   Analysis of synchronization in the response of neurons to noisy periodic synaptic input [J].
Burkitt, AN ;
Clark, GM .
NEUROCOMPUTING, 2000, 32 (32-33) :67-75
[7]   INVERSE OF FIRST PASSAGE TIME PROBABILITY PROBLEM [J].
CAPOCELLI, RM ;
RICCIARDI, LM .
JOURNAL OF APPLIED PROBABILITY, 1972, 9 (02) :270-+
[8]   Impulse-induced optimum control of escape from a metastable state by periodic secondary excitations [J].
Chacon, R. ;
Martinez, J. A. ;
Miralles, J. J. .
PHYSICAL REVIEW E, 2012, 85 (06)
[9]   Stochastic resonance in a neuron model that transmits spike trains [J].
ChapeauBlondeau, F ;
Godivier, X ;
Chambet, N .
PHYSICAL REVIEW E, 1996, 53 (01) :1273-1275
[10]   A simple noise model with memory for biological systems [J].
Chichigina, O ;
Valenti, D ;
Spagnolo, B .
FLUCTUATION AND NOISE LETTERS, 2005, 5 (02) :L243-L250