Instability of C60 fullerene interacting with lipid bilayer

被引:29
|
作者
Baowan, Duangkamon [1 ,2 ]
Cox, Barry J. [3 ]
Hill, James M. [3 ]
机构
[1] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
[2] Mahidol Univ, Fac Sci, Dept Math, Bangkok 10400, Thailand
[3] Univ Adelaide, Sch Math Sci, Nanomech Grp, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Fullerenes; Interaction energy; Lennard-Jones potential; Lipid bilayer; MOLECULAR-DYNAMICS SIMULATION; CARBON NANOTUBES; FORCE-FIELD; MODEL; TRANSLOCATION; NANOMATERIALS; MEMBRANES;
D O I
10.1007/s00894-011-1086-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Due to the large number of possible applications of nanoparticles in cosmetic and medical products, the possible hazards of nanoparticles in the human body are a major concern. A worst-case scenario is that nanoparticles might cause health issues such as skin damage or even induce cancer. As a first step to study the toxicity of nanoparticles, we investigate the energy behaviour of a C-60 fullerene interacting with a lipid bilayer. Using the 6-12 Lennard-Jones potential function and the continuous approximation, the equilibrium spacing between the two layers of a bilayer is predicted to be 3.36 . On assuming that there is a circular hole in the lipid bilayer, a relation for the molecular interaction energy is determined, involving the circular radius b of the hole and the perpendicular distance Z of the spherical fullerene from the hole. A graph of the minimum energy location Z (min) verses the hole radius b shows that a C-60 fullerene first penetrates through a lipid bilayer when b > 6.81 , and shows a simple circular relation Z(min)(2) + b(2) = 6.81(2) for Z(min) positive and b a parts per thousand currency signaEuro parts per thousand 6.81 . For b > 6.81, the fullerene relocates from the surface of the bilayer to the interior, and as the hole radius increases further it moves to the centre of the bilayer and remains there for increasing hole radii. Accordingly, our modelling indicates that at least for the system with no external forces, the C-60 fullerene will not penetrate through the lipid bilayer but rather remains encased between the two layers at the mid-plane location.
引用
收藏
页码:549 / 557
页数:9
相关论文
共 50 条
  • [1] Instability of C60 fullerene interacting with lipid bilayer
    Duangkamon Baowan
    Barry J. Cox
    James M. Hill
    Journal of Molecular Modeling, 2012, 18 : 549 - 557
  • [2] Structurization of a solvent interacting with fullerene C60
    B. M. Ginzburg
    Sh. Tuichiev
    S. Kh. Tabarov
    A. A. Shepelevskii
    Crystallography Reports, 2005, 50 : 735 - 738
  • [3] Structurization of a solvent interacting with fullerene C60
    Ginzburg, BM
    Tuichiev, S
    Tabarov, SK
    Shepelevskii, AA
    CRYSTALLOGRAPHY REPORTS, 2005, 50 (05) : 735 - 738
  • [4] Partitioning and solubility of C60 fullerene in lipid membranes
    Rossi, G.
    Barnoud, J.
    Monticelli, L.
    PHYSICA SCRIPTA, 2013, 87 (05)
  • [5] [60]Fullerene (C60)
    Nagata, Koichi
    Dejima, Eiji
    JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 2006, 64 (08) : 871 - 873
  • [6] Equilibrium Parameters of Bilayer Graphene Filled with Fullerene C60 Molecules
    S. Sh. Rekhviashvili
    M. M. Bukhurova
    Technical Physics Letters, 2021, 47 : 403 - 404
  • [7] Equilibrium Parameters of Bilayer Graphene Filled with Fullerene C60 Molecules
    Rekhviashvili, S. Sh
    Bukhurova, M. M.
    TECHNICAL PHYSICS LETTERS, 2021, 47 (05) : 403 - 404
  • [8] Fullerene C60 as an inhibitor of high temperature lipid oxidation
    Czochara, Robert
    Ziaja, Przemyslaw
    Piotrowski, Piotr
    Pokrop, Rafal
    Litwinienko, Grzegorz
    CARBON, 2012, 50 (10) : 3943 - 3946
  • [9] Translocation of C60 and its derivatives across a lipid bilayer
    Qiao, Rui
    Roberts, Aaron P.
    Mount, Andrew S.
    Klaine, Stephen J.
    Ke, Pu Chun
    NANO LETTERS, 2007, 7 (03) : 614 - 619
  • [10] Voltammetric study of fullerene C60 and fullerene C60 nanotubes with sandwich method
    Zhang, Xuzhi
    Jiao, Kui
    Piao, Guangzhe
    Liu, Shufeng
    Li, Shaoxiang
    SYNTHETIC METALS, 2009, 159 (5-6) : 419 - 423