A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy

被引:236
作者
Gibson, N. P. [1 ]
Aigrain, S. [1 ]
Roberts, S. [2 ]
Evans, T. M. [1 ]
Osborne, M. [2 ]
Pont, F. [3 ]
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3RH, England
[2] Univ Oxford, Dept Engn Sci, Robot Res Grp, Oxford OX1 3PJ, England
[3] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
methods: data analysis; techniques: spectroscopic; stars: individual: HD 189733; planetary systems; TIME-SERIES PHOTOMETRY; LIGHT-CURVE PROJECT; PLANETARY TRANSIT; EXTRASOLAR PLANET; PREDICTION; ATMOSPHERE; SPECTRA;
D O I
10.1111/j.1365-2966.2011.19915.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Transmission spectroscopy, which consists of measuring the wavelength-dependent absorption of starlight by a planets atmosphere during a transit, is a powerful probe of atmospheric composition. However, the expected signal is typically orders of magnitude smaller than instrumental systematics and the results are crucially dependent on the treatment of the latter. In this paper, we propose a new method to infer transit parameters in the presence of systematic noise using Gaussian processes, a technique widely used in the machine learning community for Bayesian regression and classification problems. Our method makes use of auxiliary information about the state of the instrument, but does so in a non-parametric manner, without imposing a specific dependence of the systematics on the instrumental parameters, and naturally allows for the correlated nature of the noise. We give an example application of the method to archival NICMOS transmission spectroscopy of the hot Jupiter HD 189733, which goes some way towards reconciling the controversy surrounding this data set in the literature. Finally, we provide an appendix giving a general introduction to Gaussian processes for regression, in order to encourage their application to a wider range of problems.
引用
收藏
页码:2683 / 2694
页数:12
相关论文
共 37 条
[1]  
[Anonymous], 2006, Pattern recognition and machine learning
[2]   Hubble Space Telescope time-series photometry of the transiting planet of HD 209458 [J].
Brown, TM ;
Charbonneau, D ;
Gilliland, RL ;
Noyes, RW ;
Burrows, A .
ASTROPHYSICAL JOURNAL, 2001, 552 (02) :699-709
[3]   Transmission spectra as diagnostics of extrasolar giant planet atmospheres [J].
Brown, TM .
ASTROPHYSICAL JOURNAL, 2001, 553 (02) :1006-1026
[4]   Efficient identification of exoplanetary transit candidates from SuperWASP light curves [J].
Cameron, A. Collier ;
Wilson, D. M. ;
West, R. G. ;
Hebb, L. ;
Wang, X-B. ;
Aigrain, S. ;
Bouchy, F. ;
Christian, D. J. ;
Clarkson, W. I. ;
Enoch, B. ;
Esposito, M. ;
Guenther, E. ;
Haswell, C. A. ;
Hebrard, G. ;
Hellier, C. ;
Horne, K. ;
Irwin, J. ;
Kane, S. R. ;
Loeillet, B. ;
Lister, T. A. ;
Maxted, P. ;
Mayor, M. ;
Moutou, C. ;
Parley, N. ;
Pollacco, D. ;
Pont, F. ;
Queloz, D. ;
Ryans, R. ;
Skillen, I. ;
Street, R. A. ;
Udry, S. ;
Wheatley, P. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 380 (03) :1230-1244
[5]   PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES [J].
Carter, Joshua A. ;
Winn, Joshua N. .
ASTROPHYSICAL JOURNAL, 2009, 704 (01) :51-67
[6]   Detection of thermal emission from an extrasolar planet [J].
Charbonneau, D ;
Allen, LE ;
Megeath, ST ;
Torres, G ;
Alonso, R ;
Brown, TM ;
Gilliland, RL ;
Latham, DW ;
Mandushev, G ;
O'Donovan, FT ;
Sozzetti, A .
ASTROPHYSICAL JOURNAL, 2005, 626 (01) :523-529
[7]   Detection of an extrasolar planet atmosphere [J].
Charbonneau, D ;
Brown, TM ;
Noyes, RW ;
Gilliland, RL .
ASTROPHYSICAL JOURNAL, 2002, 568 (01) :377-384
[8]   Infrared radiation from an extrasolar planet [J].
Deming, D ;
Seager, S ;
Richardson, LJ ;
Harrington, J .
NATURE, 2005, 434 (7034) :740-743
[9]  
Foster L, 2009, J MACH LEARN RES, V10, P857
[10]   Sequential Bayesian Prediction in the Presence of Changepoints and Faults [J].
Garnett, Roman ;
Osborne, Michael A. ;
Reece, Steven ;
Rogers, Alex ;
Roberts, Stephen J. .
COMPUTER JOURNAL, 2010, 53 (09) :1430-1446