Positive solutions for a system of p-Laplacian boundary value problems

被引:14
作者
Yang, Zhilin [1 ]
机构
[1] Qingdao Technol Univ, Dept Math, Qingdao, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
p-Laplacian boundary value problem; Positive solution; A priori estimate; Fixed point index; The Jensen integral inequality; R-+(n)-monotone matrix; EXISTENCE;
D O I
10.1016/j.camwa.2011.10.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and multiplicity of positive solutions for the system of p-Laplacian boundary value problems -((u(i)')(pi-1))' = f(i)(t, u(l),...,u(n)), u(i)'(1) = 0, i = 1,...,n, where n >= 2, p(i) > 1, f(i) is an element of C([0, 1] x R-+(n))(i = 1,...,n, R+ : = [0, infinity)). Based on a priori estimates achieved by utilizing the Jensen integral inequalities and R-+(n)-monotone matrices, we use fixed point index theory to establish the existence and multiplicity of positive solutions for the above problem. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4429 / 4438
页数:10
相关论文
共 40 条
[1]  
Agarwal R.P., 2003, ARCH INEQUAL APPL, V1, P119
[2]   Existence and multiplicity of positive solutions for singular semipositone p-Laplacian equations [J].
Agarwal, RP ;
Cao, DM ;
Lü, HS ;
O'Regan, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (03) :449-475
[3]   Landesman-Lazer type conditions for a system of p-Laplacian like operators [J].
Amster, Pablo ;
De Napoli, Pablo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1236-1243
[4]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[5]  
[Anonymous], 2003, FIXED POINT THEOR-RO, DOI DOI 10.1007/978-0-387-21593-8
[6]  
[Anonymous], 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[7]   Existence of three positive pseudo-symmetric solutions for a one dimensional p-Laplacian [J].
Avery, R ;
Henderson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (02) :395-404
[8]   Multiple positive solutions for some p-Laplacian boundary value problems [J].
Bai, ZB ;
Gui, ZJ ;
Ge, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (02) :477-490
[9]  
Ben-Naoum A.K., 1997, Differential Integral Equations, V10, P1093
[10]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13