Structural dynamics in the C terminal domain homolog of orange carotenoid Protein reveals residues critical for carotenoid uptake

被引:13
作者
Harris, Dvir [1 ,2 ]
Muzzopappa, Fernando [3 ]
Glaser, Fabian [4 ]
Wilson, Adjele [3 ]
Kirilovsky, Diana [3 ]
Adir, Noam [1 ,2 ]
机构
[1] Technion, Schulich Fac Chem, IL-3200003 Haifa, Israel
[2] Technion, Grand Technion Energy Program GTEP, IL-3200003 Haifa, Israel
[3] Univ Paris Saclay, Inst Integrat Biol Cell I2BC, CEA, CNRS, F-91198 Gif Sur Yvette, France
[4] Technion Israel Inst Technol, Lorry I Lokey Interdisciplinary Ctr Life Sci & En, Haifa, Israel
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2020年 / 1861卷 / 08期
基金
以色列科学基金会; 欧盟地平线“2020”;
关键词
X-ray crystallography; Cyanobacteria; Ligand transfer; Photoprotection; Molecular dynamics; Mutagenesis; CRYSTAL-STRUCTURE; EVOLUTION; PHOTOPROTECTION; SOFTWARE; PHYCOBILISOME; MECHANISM; ISOMERASE; COMPLEX; ORIGIN; FAMILY;
D O I
10.1016/j.bbabio.2020.148214
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structural features enabling carotenoid translocation between molecular entities in nature is poorly understood. Here, we present the three-dimensional X-ray structure of an expanded oligomeric state of the C-terminal domain homolog (CTDH) of the orange carotenoid protein, a key water-soluble protein in cyanobacterial photosynthetic photo-protection, at 2.9 angstrom resolution. This protein binds a canthaxanthin carotenoid ligand and undergoes structural reorganization at the dimeric level, which facilitates cargo uptake and delivery. The structure displays heterogeneity revealing the dynamic nature of its C-terminal tail (CTT). Molecular dynamics (MD) simulations based on the CTDH structures identified specific residues that govern the dimeric transition mechanism. Mutagenesis based on the crystal structure and these MD simulations then confirmed that these specific residues within the CTT are critical for carotenoid uptake, encapsulation and delivery processes. We present a mechanism that can be applied to other systems that require cargo uptake.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Towards automated crystallographic structure refinement with phenix.refine [J].
Afonine, Pavel V. ;
Grosse-Kunstleve, Ralf W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Moriarty, Nigel W. ;
Mustyakimov, Marat ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Zwart, Peter H. ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 :352-367
[2]  
[Anonymous], PLANT PHYSL
[3]   Photoactivation mechanism of a carotenoid-based photoreceptor [J].
Bandara, Sepalika ;
Ren, Zhong ;
Lu, Lu ;
Zeng, Xiaoli ;
Shin, Heewhan ;
Zhao, Kai-Hong ;
Yang, Xiaojing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (24) :6286-6291
[4]   Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria [J].
Bao, Han ;
Melnicki, Matthew R. ;
Kerfeld, Cheryl A. .
CURRENT OPINION IN PLANT BIOLOGY, 2017, 37 :1-9
[5]   The light-harvesting function of carotenoids in the cyanobacterial stress-inducible IsiA complex [J].
Berera, Rudi ;
van Stokkum, Ivo H. M. ;
Kennis, John T. M. ;
van Grondelle, Rienk ;
Dekker, Jan P. .
CHEMICAL PHYSICS, 2010, 373 (1-2) :65-70
[6]   The origin and evolution of oxygenic photosynthesis [J].
Blankenship, RE ;
Hartman, H .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (03) :94-97
[7]   ORIGIN AND EARLY EVOLUTION OF PHOTOSYNTHESIS [J].
BLANKENSHIP, RE .
PHOTOSYNTHESIS RESEARCH, 1992, 33 (02) :91-111
[8]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[9]   NTF2 monomer-dimer equilibrium [J].
Chaillan-Huntington, C ;
Butler, PJG ;
Huntington, JA ;
Akin, D ;
Feldherr, C ;
Stewart, M .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 314 (03) :465-477
[10]  
Croce R., 2018, Light Harvesting in Photosynthesis