IDENTITIES WITH DERIVATIONS IN RINGS

被引:9
作者
Fosner, Ajda [1 ]
Fosner, Maja [2 ]
Vukman, Joso [3 ]
机构
[1] Univ Primorska, Fac Management, Koper 6104, Slovenia
[2] Univ Maribor, Fac Logist, Celje 3000, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Dept Math & Comp Sci, Maribor 2000, Slovenia
关键词
Prime ring; semiprime ring; derivation; SEMIPRIME RINGS;
D O I
10.3336/gm.46.2.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate identities with derivations in rings. We prove, for example the following result. Let m >= in >= 1 be some fixed integers and let R be a 6nm(2) (2m+n-3)!-torsion free semiprime ring. Suppose there exists a derivation D : R -> R satisfying the relation [[D(x(m)), x(n)], D(x(m))] = 0 for all x is an element of R. In this case D maps R into its center.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 50 条
[21]   Some Identities Involving Multiplicative Generalized Derivations in Prime and Semiprime Rings [J].
Dhara, Basudeb ;
Mozumder, Muzibur Rahman .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01) :25-36
[22]   On rings and algebras with derivations [J].
Ali, Shakir ;
Khan, Mohammad Salahuddin ;
Khan, Abdul Nadim ;
Muthana, Najat M. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (06)
[23]   Generalized Derivations Vanishing on Co-Commutator Identities in Prime Rings [J].
Dhara, Basudeb .
FILOMAT, 2021, 35 (06) :1785-1801
[24]   Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings [J].
Basudeb Dhara ;
Sukhendu Kar ;
Nripendu Bera .
Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 :1497-1516
[25]   Commutativity of rings with derivations [J].
Andima, S. ;
Pajoohesh, H. .
ACTA MATHEMATICA HUNGARICA, 2010, 128 (1-2) :1-14
[26]   Differential Identities and Generalized Derivations in Prime Rings with Involution [J].
Boua, Abdelkarim ;
Ashraf, Mohammad .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (02) :165-181
[27]   Characterizing multiplicative (generalized)-derivations on semiprime rings satisfying specific functional identities [J].
Ul Huque, Inzamam ;
Alnoghashi, Hafedh .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
[28]   Generalised (α, β)-derivations in rings with involution [J].
Alhazmi, Husain ;
Ali, Shakir ;
Khan, Abdul N. .
MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2020, 14 (01) :68-80
[29]   Linear identities and derivations [J].
Lee, TK ;
Shine, WK .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) :3317-3327
[30]   On certain subgroups of semiprime rings with derivations [J].
Wong, TL .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) :1961-1968