IDENTITIES WITH DERIVATIONS IN RINGS

被引:9
作者
Fosner, Ajda [1 ]
Fosner, Maja [2 ]
Vukman, Joso [3 ]
机构
[1] Univ Primorska, Fac Management, Koper 6104, Slovenia
[2] Univ Maribor, Fac Logist, Celje 3000, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Dept Math & Comp Sci, Maribor 2000, Slovenia
关键词
Prime ring; semiprime ring; derivation; SEMIPRIME RINGS;
D O I
10.3336/gm.46.2.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate identities with derivations in rings. We prove, for example the following result. Let m >= in >= 1 be some fixed integers and let R be a 6nm(2) (2m+n-3)!-torsion free semiprime ring. Suppose there exists a derivation D : R -> R satisfying the relation [[D(x(m)), x(n)], D(x(m))] = 0 for all x is an element of R. In this case D maps R into its center.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 9 条
[1]  
[Anonymous], P AM MATH SOC
[2]  
Beidar K. I., 1996, RINGS GEN IDENTITIES
[3]   ON COMPOSITIONS OF DERIVATIONS OF PRIME-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (03) :647-652
[4]   ON DERIVATIONS AND COMMUTATIVITY IN SEMIPRIME RINGS [J].
DENG, Q ;
BELL, HE .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (10) :3705-3713
[5]  
Fosner A, 2008, DEMONSTR MATH, V41, P525
[6]  
Lee T. K., 1992, Bull. Inst. Math. Acad. Sinica, V20, P27
[7]  
PSONER EC, 1957, P AM MATH SOC, V8, P1093
[8]  
Vukman J., 2005, Glasnik Matematicki, Serija III, V40, P189, DOI 10.3336/gm.40.2.01
[9]   Derivations on semiprime rings [J].
Vukman, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) :353-359