In-Place Sorting

被引:0
作者
Geffert, Viliam [1 ]
Gajdos, Jozef [2 ]
机构
[1] Safarik Univ, Dept Comp Sci, Jesenna 5, Kosice 04154, Slovakia
[2] Coll Internatl Business ISM Slovakia, Presov, Slovakia
来源
SOFSEM 2011: THEORY AND PRACTICE OF COMPUTER SCIENCE | 2011年 / 6543卷
关键词
in-place algorithms; sorting; computational complexity; MINIMUM DATA MOVEMENT; LOG N COMPARISONS; O(N) MOVES; SELECTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm for asymptotically efficient sorting. Our algorithm sorts the given array A by the use of n.lg n + O(n.lg lg n) comparisons and O(n) element moves. Moreover, this algorithm works in-place, using only a constant auxiliary workspace. This shrinks the gap between the known information-theoretic lower bound and the existing algorithms to O(n/lg lg n) comparisons, even if we require the algorithm to use only a constant auxiliary memory and a linear number of moves.
引用
收藏
页码:248 / 259
页数:12
相关论文
共 9 条
[1]   An in-place sorting with O (n log n) comparisons and O(n) moves [J].
Franceschini, G ;
Geffert, V .
JOURNAL OF THE ACM, 2005, 52 (04) :515-537
[2]   Sorting stably, in place, with O (n log n) comparisons and O(n) moves [J].
Franceschini, Gianni .
THEORY OF COMPUTING SYSTEMS, 2007, 40 (04) :327-353
[3]  
Geffert V, 2006, COMPUT INFORM, V25, P333
[4]  
Knuth D., 1998, ART COMPUTER PROGRAM
[5]  
Knuth Donald E., 1998, The Art of Computer Programming, V3
[6]   Selection from read-only memory and sorting with minimum data movement [J].
Munro, JI ;
Raman, V .
THEORETICAL COMPUTER SCIENCE, 1996, 165 (02) :311-323
[7]  
MUNRO JI, 1992, J ALGORITHMS, V13, P374, DOI 10.1016/0196-6774(92)90045-E
[8]  
Willard Dan E, 1982, P 14 ANN ACM S THEOR, P114
[9]  
[No title captured]