Can You Sign A Quantum State?

被引:6
作者
Alagic, Gorjan [1 ,2 ]
Gagliardoni, Tommaso [3 ]
Majenz, Christian [4 ]
机构
[1] Univ Maryland, QuICS, College Pk, MD 20742 USA
[2] NIST, Gaithersburg, MD 20899 USA
[3] Kudelski Secur, Zurich, Switzerland
[4] Ctr Wiskunde & Informat & QuSoft, Amsterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
COMPUTATIONAL SECURITY;
D O I
10.22331/q-2021-12-16-603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1 / 38
页数:38
相关论文
共 21 条
[1]  
Aharonov D., 2010, 1 S INN COMP SCI ICS, P453
[2]   Unforgeable Quantum Encryption [J].
Alagic, Gorjan ;
Gagliardoni, Tommaso ;
Majenz, Christian .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT III, 2018, 10822 :489-519
[3]   Quantum Non-malleability and Authentication [J].
Alagic, Gorjan ;
Majenz, Christian .
ADVANCES IN CRYPTOLOGY - CRYPTO 2017, PART II, 2017, 10402 :310-341
[4]   Computational Security of Quantum Encryption [J].
Alagic, Gorjan ;
Broadbent, Anne ;
Fefferman, Bill ;
Gagliardoni, Tommaso ;
Schaffner, Christian ;
Jules, Michael St. .
INFORMATION THEORETIC SECURITY, ICITS 2016, 2016, 10015 :47-71
[5]  
An JH, 2002, LECT NOTES COMPUT SC, V2332, P83
[6]   Composable and Finite Computational Security of Quantum Message Transmission [J].
Banfi, Fabio ;
Maurer, Ueli ;
Portmann, Christopher ;
Zhu, Jiamin .
THEORY OF CRYPTOGRAPHY, TCC 2019, PT I, 2019, 11891 :282-311
[7]  
Barnum H, 2002, ANN IEEE SYMP FOUND, P449, DOI 10.1109/SFCS.2002.1181969
[8]   Efficient Simulation for Quantum Message Authentication [J].
Broadbent, Anne ;
Wainewright, Evelyn .
INFORMATION THEORETIC SECURITY, ICITS 2016, 2016, 10015 :72-91
[9]   Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity [J].
Broadbent, Anne ;
Jeffery, Stacey .
ADVANCES IN CRYPTOLOGY, PT II, 2015, 9216 :609-629
[10]  
Dulek Y., 2018, 13 C THEORY QUANTUM, DOI [10.4230/LIPIcs.TQC.2018.1, DOI 10.48550/ARXIV.1804.02237]